The cell of origin in childhood brain tumors affects susceptibility to therapy

November 17, 2016

Children that are diagnosed with the severe the brain tumour malignant glioma often have a very poor prognosis. Knowledge about how pediatric malignant glioma arises and develops is still limited. New findings from Uppsala University show that in mice glioma development and glioma cell properties are affected by both age and the cell type from which the tumour has arisen. The tumour cell of origin was also important for the susceptibility of the tumour cells towards cancer drugs.

The study is published in the journal Cancer Research.

The brain is composed mainly of two types of cells; neurons and supportive cells called glial cells. Glioma are brain tumours that are similar to glial cells and in adults malignant glioma is the most common form of primary brain tumour. In children malignant glioma is relatively rare, but, as for adults, the prognosis is very poor, and of all childhood cancers malignant glioma is among the most lethal.

Malignant glioma in children is much less studied than in adults and to improve the possibilities to find efficient drugs more knowledge and relevant disease models are needed. Also, most studies in the field have been focused on the genetics of the disease and there is a lack of knowledge about in which cell type the tumour has originated and how this particular cell type affects the properties of the tumour. This is exactly what the researchers have investigated in the present study where they have used mouse models of glioma and have found that malignant glioma originating from different cell types behave differently.

The researchers induced glioma tumours from both undifferentiated stem cells, that can give rise to both neurons and glial cells, and from oligodendrocyte precursor cells (OPC), that are more differentiated and can only give rise to glial cells.

'It turned out that tumours originating from stem cells were both more frequent and more aggressive as compared to those that originated from OPC. A very interesting finding was that tumour cells that had originated from undifferentiated stem cells were more susceptible to a range of cancer drugs,' says Lene Uhrbom who has led the study at the Department of Immunology, Genetics and Pathology.

The researchers also compared how the tumours developed in young mice as compared to adult mice and found that both age and cell of origin are important for tumour development. Furthermore, they could show that their tumour models in young mice were highly similar to a subgroup of malignant glioma in children.

'We have developed new models that are relevant for studies of childhood malignant glioma. There is a lack of such models and we believe that these can become very useful in further studies to uncover the underpinnings of this devastating disease. Our finding that the cell of origin could influence the response to treatment also shows that is important to identify clinically relevant subgroups of childhood malignant glioma, to be able to design the most efficient therapy for each patient. Our next challenge will be to find out how different cells of origin for glioma gives rise to these differences and to identify new targets for therapy,' says Lene Uhrbom.
-end-


Uppsala University

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.