Nav: Home

Tracking the flow of quantum information

November 17, 2016

New Haven, Conn. - If objects in motion are like rainwater flowing through a gutter and landing in a puddle, then quantum objects in motion are like rainwater that might end up in a bunch of puddles, all at once. Figuring out where quantum objects actually go has frustrated scientists for years.

Now a Yale-led group of researchers has derived a formula for understanding where quantum objects land when they are transmitted. It's a development that offers insight for controlling open quantum systems in a variety of situations.

"The formula we derive turns out to be very useful in operating a quantum computer," said Victor Albert, first author of a study published in the journal Physical Review X. "Our result says that, in principle, we can engineer 'rain gutters' and 'gates' in a system to manipulate quantum objects, either after they land or during their actual flow."

In this case, the gutters and gates represent the idea of dissipation, a process that is usually destructive to fragile quantum properties, but that can sometimes be engineered to control and protect those properties.

The principal investigator of the research is Liang Jiang, assistant professor of applied physics and physics at Yale.

It is a fundamental principle of nature that objects will move until they reach a state of minimal energy, or grounding. But in quantum systems, there can be multiple groundings because quantum systems can exist in multiple states at the same time -- what is known as superposition.

That's where the gutters and gates come in. Jiang, Albert, and their colleagues used these mechanisms to formulate the probability of quantum objects landing in one spot or the other. The formula also showed there was one situation in which superposition can never be sustained: when a quantum "droplet" in superposition has landed in one "puddle" already, but hasn't yet arrived at the other "puddle."

"In other words, such a superposition state always loses some of its quantum properties as the 'droplet' flows completely into both puddles," Albert said. "This is in some ways a negative result, but it is a bit surprising that it always holds."

Both aspects of the formula will be helpful in building quantum computers, Albert noted. As the research community continues to develop technological platforms capable of supporting such systems, Albert said, it will need to know "what is and isn't possible."
-end-
Additional co-authors of the study are Barry Bradlyn of Princeton and Martin Fraas of KU Leuven.

Yale University

Related Quantum Articles:

Quantum nanoscope
Researchers have studied how light can be used to 'see' the quantum nature of an electronic material.
'Quantum leap' for Liverpool
Physicists from the University of Liverpool have made a huge step forwards towards building a novel experiment to probe the 'dark contents' of the vacuum.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Quantum reservoir for microwaves
EPFL researchers use a mechanical micrometer-size drum cooled close to the quantum ground state to amplify microwaves in a superconducting circuit.
Looking for the quantum frontier
Researchers have developed a new theoretical framework to identify computations that occupy the 'quantum frontier' -- the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer.
Quantum mechanics are complex enough, for now...
Physicists have searched for deviations from standard quantum mechanics, testing whether quantum mechanics requires a more complex set of mathematical rules.
Seeing the quantum future... literally
Sydney scientists have demonstrated the ability to 'see' the future of quantum systems and used that knowledge to preempt their demise, in a major achievement that could help bring the strange and powerful world of quantum technology closer to reality.
The sound of quantum vacuum
Quantum mechanics dictates sensitivity limits in the measurements of displacement, velocity and acceleration.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
Watching quantum jumps
When a quantum system changes its state, this is called a quantum jump.

Related Quantum Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".