The future of cell culture: A new continuous bioprocess developed

November 17, 2017

A technique which revolutionises cell culture by allowing the continuous production and collection of cells, has been developed by scientists at Newcastle University.

The process removes the limit on the number of cells that can be grown in a culture dish, which until now has been strictly confined by its surface area.

The research published today in ACS Applied Materials & Interfaces reports how the Newcastle team have developed a coating that allows individual stromal cells to "peel away" from the surface on which they are grown. This creates more space so that further cells can grow in their place - continuously. The team has also demonstrated that the process works across a range of stromal cells including mesenchymal stem cells (MSCs).

Che Connon, Professor of Tissue Engineering and author of the paper, said: "This allows us to move away, for the first time, from the batch production of cells to an unremitting process. Remarkably, with this continuous production technique even a culture surface the size of a penny can, over a period of time, generate the same number of cells as a much larger-sized flask.

"This concept also represents an important innovation for cell-based therapies, where treatments can require up to a billion cells per patient. With our new technology, one square meter would produce enough cells to treat 4,000 patients, while traditional methods would require an area equivalent to a football pitch!

"Our new technology also offers complete control over the rate of cell production, so it could be scaled up using existing stacked culture flasks to produce one billion cells per week, or scaled down so as to fit a bioreactor on the head of a pin."

Scaling for bioprocessing

Traditionally, cells have been grown in the lab over the surface area of a flask and then detached chemically or enzymatically for use. The cells are created in batches with batch size limited to the area upon which the cells are grown. This limitation is a well-recognised bottle-neck in therapeutic cell manufacture, and one that current businesses are unable to meet due to a lack of a suitable alternative technology.

The publication addresses this challenge, describing a special "peptide amphiphile" coating that allows adherent cells to reach a steady balance between growth and detachment. The self-detaching cells are then produced in a continuous bioprocess and available for use in a variety of downstream applications without losing their original characteristics.

The potential reduced size of a continuous cell bioprocess has obvious advantages in terms of lower production costs and increased coverage and application.

There are a number of cell-based therapies in later stage development and it is estimated that 10 million patients could potentially benefit from cardiac cell therapy each year. However, the traditional approach would require an area equivalent to that of Central London and Midtown Manhattan running simultaneously to produce enough.

Martina Miotto, a PhD student from the Institute of Genetic Medicine, who is first author on the paper, said: "The concept of a continuous bioprocess is currently used to produce biopharmaceuticals such as vaccines and anti-cancer antibodies, but never before for cells.

"There is a fantastically high number of patients in need of cell therapy, such as those suffering from heart, cartilage, skin and cancer related diseases. Our new technology provides a much-needed solution while saving costs, reducing materials and improving the quality and the standardisation of the final product."
-end-
REFERENCE: Developing a Continuous Bioprocessing Approach to Stromal Cell Manufacture. Martina Miotto, Ricardo Gouveia, Fadhilah Zainal Abidin, Francisco Figueiredo and Che J. Connon. American Chemical Society Applied Materials & Interfaces. DOI: 10.1021/acsami.7b09809

Newcastle University

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.