Brain activity buffers against worsening anxiety

November 17, 2017

DURHAM, N.C. - Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

Using non-invasive brain imaging, the researchers found that people at-risk for anxiety were less likely to develop the disorder if they had higher activity in a region of the brain responsible for complex mental operations. The results may be a step towards tailoring psychological therapies to the specific brain functioning of individual patients.

"These findings help reinforce a strategy whereby individuals may be able to improve their emotional functioning -- their mood, their anxiety, their experience of depression -- not only by directly addressing those phenomena, but also by indirectly improving their general cognitive functioning," said Ahmad Hariri, a professor of psychology and neuroscience at Duke. The results are published Nov. 17 in the journal Cerebral Cortex.

Previous findings from Hariri's group show that people whose brains exhibit a high response to threat and a low response to reward are more at risk of developing symptoms of anxiety and depression over time.

In the current work, Hariri and Matthew Scult, a clinical psychology graduate student in the department of psychology and neuroscience at Duke, wanted to investigate whether higher activity in a region of the brain called the dorsolateral prefrontal cortex could help shield these at-risk individuals from future mental illness.

"We wanted to address an area of understanding mental illness that has been neglected, and that is the flip side of risk," Hariri said. "We are looking for variables that actually confer resiliency and protect individuals from developing problems."

The dorsolateral prefrontal cortex is our brain's "executive control" center, helping us focus our attention and plan complex actions. It also plays a role in emotion regulation, and well-established types of psychotherapy, including cognitive behavioral therapy, engage this region of the brain by equipping patients with strategies to reframe or re-evaluate their emotions.

The team drew on data from 120 undergraduate students who participated in the Duke Neurogenetics Study. Each participant completed a series of mental health questionnaires and underwent a type of non-invasive brain scan called functional Magnetic Resonance Imaging (fMRI) while engaged in tasks meant to activate specific regions of the brain.

The researchers asked each participant to answer simple memory-based math problems to stimulate the dorsolateral prefrontal cortex. Participants also viewed angry or scared faces to activate a region of the brain called the amygdala, and played a reward-based guessing game to stimulate activity in the brain's ventral striatum.

Scult was particularly interested in "at-risk" individuals with the combination of high threat-related activity in the amygdala and low reward-related activity in the ventral striatum. By comparing participants' mental health assessments at the time of the brain scans, and in a follow-up occurring on average seven months later, he found that these at-risk individuals were less likely to develop anxiety if they also had high activity in the dorsolateral prefrontal cortex.

"We found that if you have a higher functioning dorsolateral prefrontal cortex, the imbalance in these deeper brain structures is not expressed as changes in mood or anxiety," Hariri said.

The dorsolateral prefrontal cortex is especially skilled at adapting to new situations, the researchers say. Individuals whose brains exhibit the at-risk signatures may be more likely to benefit from strategies that boost the brain's dorsolateral prefrontal activity, including cognitive behavioral therapy, working memory training, or transcranial magnetic stimulation (TMS).

But, the researchers warn, the jury is still out on whether many brain-training exercises improve the overall functioning of the dorsolateral prefrontal cortex, or only hone its ability to complete the specific task being trained. Additional studies on more diverse populations are also needed to confirm their findings.

"We are hoping to help improve current mental health treatments by first predicting who is most at-risk so that we can intervene earlier, and second, by using these types of approaches to determine who might benefit from a given therapy," Scult said.
-end-
A digital version of this release may be accessed at: https://today.duke.edu/2017/11/brain-activity-buffers-against-worsening-anxiety

The Duke Neurogenetics Study was supported by National Institutes of Health grant R01DA033369 and Duke University. Additional support for this research was provided by National Institutes of Health grant R01AG049789 and a National Science Foundation Graduate Research Fellowship.

CITATION: "Prefrontal Executive Control Rescues Risk for Anxiety Associated with High Threat and Low Reward Brain Function," Matthew A. Scult, Annchen R. Knodt, Spenser R. Radtke, Bartholomew D. Brigidi and Ahmad R. Hariri. Cerebral Cortex, Nov. 17, 2017 (online) DOI: 10.1093/cercor/bhx304

Duke University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.