Carbon emissions by plant respiration will have large impact on climate

November 17, 2017

New findings by researchers from the University of Minnesota College of Food, Agricultural and Natural Resource Sciences (CFANS), who partnered with scientists from across the world, suggest plant respiration is a larger source of carbon emissions than previously thought, and warn that as the world warms, this may reduce the ability of Earth's land surface to absorb emissions due to fossil fuel burning.

The new findings, published in the journal Nature Communications, are based on the comprehensive GlobResp database, which is comprised of more than 10,000 measurements of carbon dioxide plant respiration from plant species around the globe. Merging this data with existing computer models of global land carbon cycling shows plant respiration has been a potentially underestimated source of carbon dioxide release. The study shows, carbon release by plant respiration may be around 30 percent higher than previously predicted.

As the mean global temperature increases, the researchers estimate respiration will increase significantly. Such increases may lower the future ability of global vegetation to offset carbon dioxide emissions caused by burning fossil fuels. CFANS Forest Resources Department Professor Peter Reich, Postdoctoral Associate Ethan Butler, Research Fellow Kirk Wythers and Research Associate Ming Chen teamed up with lead author, Chris Huntingford, of the United Kingdom's Centre for Ecology & Hydrology, and 15 other physiologists and modelers in the work.

"Plants both capture carbon dioxide and then release it by respiration. Changes to either of these processes in response to climate change have profound implications for how much ecosystems soak up carbon dioxide emissions from burning fossil fuels," said Huntingford.

"Once we incorporate this data into state-of-the-art carbon cycling models, we are much closer to being able to accurately model carbon cycle feedbacks for climates across the globe," said Reich. "In fact, this study provides the most up-to-date accounting of respiratory carbon releases from plants in terrestrial systems."

"The implications of this study are enormous," Ming emphasized. "The fact that plant respiration is likely 30 percent higher than previous estimates should warn all global modelers that an updated inspection is warranted regarding how we model carbon flows in and out of terrestrial ecosystems globally."
-end-
Lead author: Professor Chris Huntingford, Climate Change Scientist, at the Centre for Ecology & Hydrology, UK. Email: chg@ceh.ac.uk. Tel: +44 (0)7884437138.

Paper details: Huntingford, C., Atkin, O.K., Martinez-de la Torre, A., Mercado, L.M., Heskel, M.A., Harper, A.B., Bloomfield, K.J., O'Sullivan, O.S., Reich, P.B., Wythers, K.R., Butler, E.E., Chen, M., Griffin, K.L., Meir, P., Tjoelker, M.G., Turnbull, M.H., Sitch, S., Wiltshire, A. and Malhi, Y. (2017) Implications of improved representations of plant respiration in a changing climate. Nature Communications. DOI: http://doi.org/10.1038/s41467-017-01774-z

About University of Minnesota College of Food, Agricultural and Natural Resource Sciences

The University of Minnesota College of Food, Agricultural and Natural Resource Sciences (CFANS) brings science-driven innovators together to discover hands-on solutions to global challenges. With 10 research and outreach centers across Minnesota, the Minnesota Landscape Arboretum, and the Bell Museum of Natural History, CFANS offer unparalleled experiential learning opportunities for students and the community. For more information, visit cfans.umn.edu.

University of Minnesota

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.