Heavy nitrogen molecules reveal planetary-scale tug-of-war

November 17, 2017

HOUSTON -- (Nov. 17, 2017) -- Nature whispers its stories in a faint molecular language, and Rice University scientist Laurence Yeung and colleagues can finally tell one of those stories this week, thanks to a one-of-a-kind instrument that allowed them to hear what the atmosphere is saying with rare nitrogen molecules.

Yeung and colleagues at Rice, UCLA, Michigan State University and the University of New Mexico counted rare molecules in the atmosphere that contain only heavy isotopes of nitrogen and discovered a planetary-scale tug-of-war between life, the deep Earth and the upper atmosphere that is expressed in atmospheric nitrogen.

The research was published online this week in the journal Science Advances.

"We didn't believe it at first," said Yeung, the lead author of the study and an assistant professor of Earth, environmental and planetary sciences at Rice. "We spent about a year just convincing ourselves that the measurements were accurate."

The story revolves around nitrogen, a key element of life that makes up more than three-quarters of Earth's atmosphere. Compared with other key elements of life like oxygen, hydrogen and carbon, nitrogen is very stable. Two atoms of it form N2 molecules that are estimated to hang around in the atmosphere for about 10 million years before being broken apart and reformed. And the vast majority of nitrogen has an atomic mass of 14. Only about 0.4 percent are nitrogen-15, an isotope that contains one extra neutron. Because nitrogen-15 is already rare, N2 molecules that contain two nitrogen-15s -- which chemists refer to as 15N15N -- are the rarest of all N2 molecules.

The new study shows that 15N15N is 20 times more enriched in Earth's atmosphere than can be accounted for by processes happening near Earth's surface.

"We think the 15N15N enrichment fundamentally comes from chemistry in the upper atmosphere, at altitudes close to the orbit of the International Space Station," Yeung said. "The tug-of-war comes from life pulling in the other direction, and we can see chemical evidence of that."

Co-author Edward Young, professor of Earth, planetary and space sciences at UCLA, said, "The enrichment of 15N15N in Earth's atmosphere reflects a balance between the nitrogen chemistry that occurs in the atmosphere, at the surface due to life and within the planet itself. It's a signature unique to Earth, but it also gives us a clue about what signatures of other planets might look like, especially if they are capable of supporting life as we know it."

The chemical processes that produce molecules like N2 can change the odds that "isotope clumps" like 15N15N will be formed. In previous work, Yeung, Young and colleagues used isotope clumps in oxygen to identify tell-tale signatures of photosynthesis in plants and ozone chemistry in the atmosphere. The nitrogen study began four years ago when Yeung, then a postdoctoral researcher at UCLA, learned about a first-of-its-kind mass spectrometer that was being installed in Young's lab.

"At that time, no one had a way to reliably quantify 15N15N," said Yeung, who joined Rice's faculty in 2015. "It has an atomic mass of 30, the same as nitric oxide. The signal from nitric oxide usually overwhelms the signal from 15N15N in mass spectrometers."

The difference in mass between nitric oxide and 15N15N is about two one-thousandths the mass of a neutron. When Yeung learned that the new machine in Young's lab could discern this slight difference, he applied for grant funding from the National Science Foundation (NSF) to explore exactly how much 15N15N was in Earth's atmosphere.

"Biological processes are hundreds to a thousand times faster at cycling nitrogen through the atmosphere than are geologic processes," Yeung said. "If it's all business as usual, one would expect that the atmosphere would reflect these biological cycles."

To find out if this was the case, co-authors Joshua Haslun and Nathaniel Ostrom at Michigan State University conducted experiments on N2-consuming and N2-producing bacteria to determine their 15N15N signatures.

These experiments suggested that one should see a bit more 15N15N in air than random pairings of nitrogen-14 and nitrogen-15 would produce -- an enrichment of about 1 part per 1,000, Yeung said.

"There was a bit of enrichment in the biological experiments, but not nearly enough to account for what we'd found in the atmosphere," Yeung said. "In fact, it meant that the process causing the atmospheric 15N15N enrichment has to fight against this biological signature. They are locked in a tug-of-war."

The team eventually found that zapping mixtures of air with electricity, which simulates the chemistry of the upper atmosphere, could produce enriched levels of 15N15N like they measured in air samples. Mixtures of pure nitrogen gas produced very little enrichment, but mixtures approximating the mix of gases in Earth's atmosphere could produce a signal even higher than what was observed in air.

"So far we've tested natural air samples from ground level and from altitudes of 32 kilometers, as well as dissolved air from shallow ocean water samples," he said. "We've found the same enrichment in all of them. We can see the tug-of-war everywhere."
-end-
Co-authors include Huanting Hu of Rice, Shuning Li, formerly of Rice and UCLA and now with Peking University in Beijing, Issaku Kohl and Edwin Schauble of UCLA and Tobias Fischer of the University of New Mexico.

The research was supported by the NSF, the Deep Carbon Observatory and the Department of Energy's Great Lakes Bioenergy Research Center.

VIDEO is available at:

https://youtu.be/SF8X74FdYy4

High-resolution IMAGES are available for download at:

http://news.rice.edu/files/2017/11/1117_NITROGEN-lyy88-lg-1rki4ko.jpg
CAPTION: Laurence Yeung (Photo by Jeff Fitlow/Rice University)

http://news.rice.edu/files/2017/11/1117_NITROGEN-pur-lg-2bnud2z.jpg
CAPTION: Researchers from Rice University and UCLA simulated high-energy chemistry in the upper atmosphere to reproduce enriched levels of 15N15N, molecules that contain only heavy isotopes of nitrogen. (Photo by Laurence Yeung/Rice University)

http://eol.jsc.nasa.gov/SearchPhotos/photo.pl?mission=ISS007&roll=E&frame=10807
CAPTION: The amount of nitrogen molecules in Earth's atmosphere that contain only heavy isotopes result from a balance between nitrogen chemistry that occurs in the atmosphere, at the surface due to life and within the planet itself. (Photo courtesy of ISS Expedition 7 Crew, EOL, NASA)

The DOI of the Science Advances paper is: 10.1126/sciadv.aao6741

A copy of the paper is available at: http://advances.sciencemag.org/content/3/11/eaao6741htt

Related stories from Rice:

Rice's Laurence Yeung named 2017 Packard Fellow -- Oct. 16, 2017

Earth scientist Laurence Yeung wins Clarke Award -- Feb. 29, 2016

Oxygen atmosphere recipe = tectonics + continents + life -- May 16, 2016

Study: Photosynthesis has unique isotopic signature -- April 23, 2015

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Nitrogen Articles from Brightsurf:

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules.

Illinois research links soil nitrogen levels to corn yield and nitrogen losses
What exactly is the relationship between soil nitrogen, corn yield, and nitrogen loss?

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.

A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.

How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.

Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.

Read More: Nitrogen News and Nitrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.