Birds of a feather do flock together

November 17, 2020

Nearly 200 years ago, Charles Darwin noted striking diversity among the finches of the Galapagos Islands, and his observations helped him propose the role of natural selection in shaping species. Today, some biologists focus their attention on a related group of birds, the finch-like capuchino seedeaters of South America, and their studies are deepening our understanding of the forces that drive evolution.

In the Proceedings of the Natural Academy of Sciences, Cold Spring Harbor Laboratory Professor Adam Siepel and collaborators at Cornell University and the Herzliya Interdisciplinary Center in Israel use genetic evidence to explain how different species of capuchino seedeaters acquired distinct patterns of coloration. Their findings shed light on the role of selective sweeps--a genetic process in which a naturally occurring variation becomes advantageous and is favored by natural selection--in the emergence of new species.

Capuchino seedeaters are of interest to evolutionary biologists because they have diversified from their common ancestor relatively recently. Each species has characteristic plumage and its own song. Differences are caused by lots of variations in only a few dozen spots in otherwise remarkably similar genomes. These small genetic "islands of differentiation" distinguish each species early in their evolutionary split from one another. Over time, as the species diverge more, researchers expect more of their genomes to change.

A few years ago, Leo Campagna and Irby Lovette at Cornell determined that many of these islands affected pigment production genes. In the current study, Siepel's group collaborated with Campagna and Lovette to identify additional differentiation sites and investigate their causes.

Two different genetic processes can create islands of differentiation: selective sweeps or a genetic incompatibility limiting the passage of specific segments of DNA within a population. Computational tools developed in Siepel's lab allowed his team, led by postdoctoral researcher Hussein Hejase, to discriminate between these possibilities. Comparing the genomes of 60 birds from five species confirmed that most of the islands of differentiation that separate today's seedeater species arose due to selective sweeps.

Notably, Siepel explained, most of these appear to be due to soft selective sweeps:

"The soft sweep acts on a variant that already exists in the population. But that variant newly becomes under selective pressure, maybe because of a change of environment, a new predator, a new food, whatever. Or in this case, we think in many cases because of sexual selection, because the birds of the opposite sex found some aspect of that variant attractive, whether it's its coloration or song, and that helped push it to high frequency."

Siepel said the finding shows that even quite striking islands of genetic differentiation can be explained by soft sweeps that acted separately on newly emerging species.
-end-


Cold Spring Harbor Laboratory

Related Birds Articles from Brightsurf:

In a warming climate, can birds take the heat?
We don't know precisely how hot things will get as climate change marches on, but animals in the tropics may not fare as well as their temperate relatives.

Dull-colored birds don't see the world like colorful birds do
Bengalese finches -- also called the Society finch -- are a species of brown, black and white birds that don't rely on colorful signals when choosing a mate.

Some dinosaurs could fly before they were birds
New research using the most comprehensive study of feathered dinosaurs and early birds has revised the evolutionary relationships of dinosaurs at the origin of birds.

If it's big enough and leafy enough the birds will come
A new study from the Cornell Lab of Ornithology highlights specific features of urban green spaces that support the greatest diversity of bird species.

How do birds understand 'foreign' calls?
New research from Kyoto University show that the coal tit (Periparus ater) can eavesdrop and react to the predatory warning calls of the Japanese tit (Parus minor) and evokes a visual image of the predator in their mind

Microelectronics for birds
Ornithologists and physicists from St Petersburg University have conducted an interdisciplinary study together with colleagues from Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences and the Biological Station Rybachy of the Zoological Institute of the Russian Academy of Sciences.

Birds of a feather better not together
A new study of North American birds from Washington University in St.

Not-so-dirty birds? Not enough evidence to link wild birds to food-borne illness
Despite the perception that wild birds in farm fields can cause food-borne illness, a WSU study has found little evidence linking birds to E. coli, Salmonella and Campylobacter outbreaks.

Birds are shrinking as the climate warms
After 40 years of collecting birds that ran into Chicago buildings, scientists have been able to show that the birds have been shrinking as the climate's warmed up.

Diving birds follow each other when fishing
Diving seabirds watch each other to work out when to dive, new research shows.

Read More: Birds News and Birds Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.