Silicon transistors will encounter pressure from nanoelectronics

November 18, 2002

San Jose, Calif. -- November 18, 2002--The future of nanoelectronics looks promising. Built with nanotubes and various self-assembling molecular structures, this technology may revolutionize the electronic world by replacing the silicon transistor in approximately ten years.

Chemically synthesized nano building blocks are expected to replace semiconductor logic and memory devices and target niche applications over the next decade.

"In 20 to 50 years, we will likely see wide-ranging use of self-assembly," says Technical Insights Director of Research Leo O'Connor.

Extreme ultraviolet (EUV) lithography is currently favored by chipmakers, and some companies are expected to use EUV to replace 157 nm scanners in the second half of the decade. Japanese electronic companies have joined forces to develop low-energy electron-beam proximity projection lithography.

Currently, chipmakers are working to make the 157 nm lithography technology operational by 2003. In doing so, they have come up against many obstacles such as the availability of calcium fluoride for lens manufacturing and contamination of optical elements.

Researchers are working to address these difficulties. Recently, supporters of various forms of next-generation lithography reported progress on 157 nm optical, projection e-beam lithography and EUV lithography. Although expensive, EUV scanners will work at the 13.5 nm wavelength and take manufacturers over several process generations.

Although chip technology plays a crucial role in the semiconductor industry, researchers believe that it is only a matter of time before the switch from lithographed silicon chips to self-assembled nanoelectronics takes place.

In anticipation of the eventual change, researchers at various universities are experimenting with different technologies. At Delft University in the Netherlands, for example, researchers have built basic logic circuits with carbon nanotubes, while at Harvard University a group of researchers used indium phosphide nanowires to build the same types of devices.

Molecular self-assembly is not without its share of problems. Despite challenges, it seems clear that nanotechnology will have a profound impact on the future development of many sectors, particularly that of electronics, which demands technologies that enable faster processing of data at lower costs.
-end-
New analysis by Technical Insights, a business unit of Frost & Sullivan (www.Technical-Insights.frost.com), featured in its Nanotech Alert subscription service, discusses pioneering research being undertaken for the development of this emerging technology.

Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis and consulting business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of nanoelectronic technologies is covered in Nanotech Alert, a Technical Insights subscription service, and in Nanodevices, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Executive summaries and interviews are available to the press.

Nanotech Alert

Contact:
USA:
Julia Rowell
P: 210.247.3870
F: 210.348.1003
E: jrowell@frost.com

APAC:
Pramila Gurtoo
DID : (603) 6204 5811
Gen : (603) 6204 5800
Fax : (603) 6201 7402
E: pgurtoo@frost.com

www.frost.com
www.Technical-Insights.frost.com


Technical Insights

Related Nanotubes Articles from Brightsurf:

Nanotubes in the eye that help us see
A new mechanism of blood redistribution that is essential for the proper functioning of the adult retina has just been discovered in vivo by researchers at the University of Montreal Hospital Research Centre (CRCHUM).

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

Exotic nanotubes move in less-mysterious ways
Rice University researchers capture the first video of boron nitride nanotubes in motion to prove their potential for materials and medical applications.

Groovy key to nanotubes in 2D
New research offers a groovy answer to the question of what causes carbon nanotubes to align in ultrathin crystalline films discovered at Rice.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Watching energy transport through biomimetic nanotubes
Scientists from the University of Groningen (the Netherlands) and the University of W├╝rzburg (Germany) have investigated a simple biomimetic light-harvesting system using advanced spectroscopy combined with a microfluidic platform.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Photovoltaic nanotubes
Physicists discovered a novel kind of nanotube that generates current in the presence of light.

Chemical synthesis of nanotubes
For the first time, researchers used benzene -- a common hydrocarbon -- to create a novel kind of molecular nanotube, which could lead to new nanocarbon-based semiconductor applications.

Read More: Nanotubes News and Nanotubes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.