Can China's future earthquakes be predicted?

November 18, 2008

Ji ShaoCheng of the Université de Montréal's affiliated engineering school École Polytechnique is part of a team studying last May's devastating earthquake in China.

On May 12, 2008, at 2:28 p.m., China's Szechwan province changed forever. In the space of 90 seconds, an earthquake equivalent to 1,200 H-bombs pulverized the earth's crust for more than 280 kilometers. Entire cities disappeared and eight million homes were swallowed up. This resulted in 70,000 deaths and 20,000 missing.

Two months later, ShaoCheng arrived in Szechwan province to study the damage first hand. The extent of the damage was unimaginable: roads and bridges collapsed, schools turned into rubble, and bodies of men and women everywhere.

According to ShaoCheng this tragedy could have been avoided. "There hasn't been on earthquake in Szechwan province for 300 years. Chinese authorities thought the fault was dead," he says.

The problem is that China relied on GPS data, which showed movements of 2 mm per year in certain areas when in reality the shifts were much bigger. "GPS is high-tech, but do we really know how to interpret its data?," he questions.

ShaoCheng was recruited by one of his ex-colleagues with whom he completed his PhD in Montpellier and who now works for the Chinese Academy of Geological Sciences. His mission is to dig three narrow wells, 3-kilometers deep, into the earth's crust for a whopping $75 million.

"The drilling will allow us to see the characteristics of the rocks before and after the earthquake. We will also measure their thermal properties and fluid pressure," says ShaoCheng. "One of these wells will have a seismometer and another will be equipped with a device similar to a stethoscope designed to listen to the earth's heartbeat."

It is expected to take five years of hard labour to rebuild the devastated region.
-end-
On the Web:
About the Université de Montréal: www.umontreal.ca/english/index.htm
Complete French version of this news item at http://nouvelles.umontreal.ca/content/view/2001/362/

University of Montreal

Related Earthquake Articles from Brightsurf:

Healthcare's earthquake: Lessons from COVID-19
Leaders and clinician researchers from Beth Israel Lahey Health propose using complexity science to identify strategies that healthcare organizations can use to respond better to the ongoing pandemic and to anticipate future challenges to healthcare delivery.

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.

How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.

Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.

Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.

Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.

Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.

Read More: Earthquake News and Earthquake Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.