Planet from another galaxy discovered

November 18, 2010

Over the last 15 years, astronomers have detected nearly 500 planets orbiting stars in our cosmic neighbourhood, but none outside our Milky Way has been confirmed [1]. Now, however, a planet with a minimum mass 1.25 times that of Jupiter [2] has been discovered orbiting a star of extragalactic origin, even though the star now finds itself within our own galaxy. It is part of the so-called Helmi stream -- a group of stars that originally belonged to a dwarf galaxy that was devoured by our galaxy, the Milky Way, in an act of galactic cannibalism about six to nine billion years ago. The results are published today in Science Express.

"This discovery is very exciting," says Rainer Klement of the Max-Planck-Institut für Astronomie (MPIA), who was responsible for the selection of the target stars for this study. "For the first time, astronomers have detected a planetary system in a stellar stream of extragalactic origin. Because of the great distances involved, there are no confirmed detections of planets in other galaxies. But this cosmic merger has brought an extragalactic planet within our reach."

The star is known as HIP 13044, and it lies about 2000 light-years from Earth in the southern constellation of Fornax (the Furnace). The astronomers detected the planet, called HIP 13044 b, by looking for the tiny telltale wobbles of the star caused by the gravitational tug of an orbiting companion. For these precise observations, the team used the high-resolution spectrograph FEROS [3] attached to the 2.2-metre MPG/ESO telescope [4] at ESO's La Silla Observatory in Chile.

Adding to its claim to fame, HIP 13044 b is also one of the few exoplanets known to have survived the period when its host star expanded massively after exhausting the hydrogen fuel supply in its core -- the red giant phase of stellar evolution. The star has now contracted again and is burning helium in its core. Until now, these so-called horizontal branch stars have remained largely uncharted territory for planet-hunters.

"This discovery is part of a study where we are systematically searching for exoplanets that orbit stars nearing the end of their lives," says Johny Setiawan, also from MPIA, who led the research. "This discovery is particularly intriguing when we consider the distant future of our own planetary system, as the Sun is also expected to become a red giant in about five billion years."

HIP 13044 b is near to its host star. At the closest point in its elliptical orbit, it is less than one stellar diameter from the surface of the star (or 0.055 times the Sun-Earth distance). It completes an orbit in only 16.2 days. Setiawan and his colleagues hypothesise that the planet's orbit might initially have been much larger, but that it moved inwards during the red giant phase.

Any closer-in planets may not have been so lucky. "The star is rotating relatively quickly for an horizontal branch star," says Setiawan. "One explanation is that HIP 13044 swallowed its inner planets during the red giant phase, which would make the star spin more quickly."

Although HIP 13044 b has escaped the fate of these inner planets so far, the star will expand again in the next stage of its evolution. HIP 13044 b may therefore be about to be engulfed by the star, meaning that it is doomed after all. This could also foretell the demise of our outer planets -- such as Jupiter -- when the Sun approaches the end of its life.

The star also poses interesting questions about how giant planets form, as it appears to contain very few elements heavier than hydrogen and helium -- fewer than any other star known to host planets. "It is a puzzle for the widely accepted model of planet formation to explain how such a star, which contains hardly any heavy elements at all, could have formed a planet. Planets around stars like this must probably form in a different way," adds Setiawan.
-end-
Notes

[1] There have been tentative claims of the detection of extragalactic exoplanets through "gravitational microlensing" events, in which the planet passing in front of an even more distant star leads to a subtle, but detectable "flash". However, this method relies on a singular event -- the chance alignment of a distant light source, planetary system and observers on Earth -- and no such extragalactic planet detection has been confirmed.

[2] Using the radial velocity method, astronomers can only estimate a minimum mass for a planet, as the mass estimate also depends on the tilt of the orbital plane relative to the line of sight, which is unknown. From a statistical point of view, this minimum mass is however often close to the real mass of the planet.

[3] FEROS stands for Fibre-fed Extended Range Optical Spectrograph.

[4] The 2.2-metre telescope has been in operation at La Silla since early 1984 and is on indefinite loan to ESO from the Max-Planck Society (Max Planck Gesellschaft or MPG in German). Telescope time is shared between MPG and ESO observing programmes, while the operation and maintenance of the telescope are ESO's responsibility.

More information

This research was presented in a paper, "A Giant Planet Around a Metal-poor Star of Extragalactic Origin", by J. Setiawan et al., to appear in Science Express on 18 November 2010.

The team is composed of J. Setiawan, R. J. Klement, T. Henning, H.-W. Rix, and B. Rochau (Max-Planck-Institut für Astronomie, Heidelberg, Germany), J. Rodmann (European Space Agency, Noordwijk, the Netherlands), and T. Schulze-Hartung (Max-Planck-Institut für Astronomie, Heidelberg, Germany).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

Photos of MPG/ESO 2.2-metre telescope:
http://www.eso.org/public/images/esopia00046teles/

ESO

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.