Tweaking a gene makes muscles twice as strong

November 18, 2011

La Jolla ---- An international team of scientists has created super-strong, high-endurance mice and worms by suppressing a natural muscle-growth inhibitor, suggesting treatments for age-related or genetics-related muscle degeneration are within reach.

The project was a collaboration between researchers at the Salk Institute for Biological Studies, and two Swiss institutions, Ecole Polytechnique Federale de Lausanne (EPFL) and the University of Lausanne.

The scientists found that a tiny inhibitor may be responsible for determining the strength of our muscles. By acting on a genome regulator (NCoR1), they were able to modulate the activity of certain genes, creating a strain of mighty mice whose muscles were twice a strong as those of normal mice.

"There are now ways to develop drugs for people who are unable to exercise due to obesity or other health complications, such as diabetes, immobility and frailty," says Ronald M. Evans, a professor in Salk's Gene Expression Laboratory, who led the Salk team. "We can now engineer specific gene networks in muscle to give the benefits of exercise to sedentary mice."

Johan Auwerx, the lead author from EPFL, says molecules such as NCoR1 are molecular brakes that decrease the activity of genes. Releasing the brake by mutation or with chemicals can reactivate gene circuits to provide more energy to muscle and enhance its activity.

In an article appearing last week in the journal Cell, the Salk researchers and their collaborators reported on the results of experiments done in parallel on mice and nematodes. By genetically manipulating the offspring of these species, the researchers were able to suppress NCoR1, which normally acts to inhibit the buildup of muscle tissues.

In the absence of the inhibitor, the muscle tissue developed much more effectively. The mice with the mutation became true marathoners, capable of running faster and longer before showing any signs of fatigue. In fact, they were able to cover almost twice the distance run by mice that hadn't received the treatment. They also exhibited better cold tolerance.

Unlike previous experiments that focused on "genetic accelerators" this work shows that suppressing an inhibitor is a new way to build muscle. Examination under a microscope confirmed that the muscle fibers of the modified mice are denser, the muscles are more massive, and the cells in the tissue contain higher numbers of mitochondria ---- cellular organelles that deliver energy to the muscles.

Similar results were also observed in nematode worms, allowing the scientists to conclude that their results could be applicable to a large range of living creatures.

The scientists have not yet detected any harmful side effects associated with eliminating the NCoR1 receptor from muscle and fat tissues. Although the experiments involved genetic manipulations, the researchers are already investigating potential drug molecules that could be used to reduce the receptor's effectiveness.

The researchers say their results are a milestone in our understanding of certain fundamental mechanisms of living organisms, in particular the little-studied role of corepressors ---molecules that inhibit the expression of genes. In addition, they give a glimpse at possible long-term therapeutic applications.

"This could be used to combat muscle weakness in the elderly, which leads to falls and contributes to hospitalizations," Auwerx says. "In addition, we think that this could be used as a basis for developing a treatment for genetic muscular dystrophy."

He added that if these results are confirmed in humans, there's no question they will attract interest from athletes as well as medical experts.
-end-
About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Salk Institute

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.