Brain receptor cell could be new target for Alzheimer's

November 18, 2014

Blocking a key receptor in brain cells that is used by oxygen free radicals could play a major role in neutralizing the biological consequences of Alzheimer's disease, according to researchers at Temple University.

The researchers' findings, "Modulation of AD Neuropathology and Memory Impairments by the Isoprostane F2α Is Mediated by the Thromboxane Receptor," were published Oct. 13 by the journal Neurobiology of Aging.

The human body's use of oxygen to produce energy often results in the formation of highly reactive molecules called oxygen free radicals. Oxidative stress occurs when the production of these free radicals is greater than the body's ability to detoxify them.

"Besides the two major signature brain pathologies associated with Alzheimer's disease, amyloid beta plaques and the tangles which are formed from the phosphorylation of the tau protein, researchers have also known for a while that there is a signature from oxidation stress," said Domenico Praticὸ, professor of pharmacology and microbiology and immunology in Temple's School of Medicine, who led the study. "But it has always been believed that oxidative stress was just a bystander and did not have an active function in the development of the disease."

In their study, Praticὸ and his colleagues discovered that the free radicals produced from oxidative stress actually bind to a protein receptor in the brain called the thromboxane receptor, or TP, and transmit signals to the neuronal cells to increase the production of amyloid beta or phosphorylated tau, the two major Alzheimer's pathologies.

"Basically, it sends the wrong message inside the neuronal cells, and with time, this definitely will result in all the clinical manifestations of the disease, such as cognitive impairment, loss of memory and brain cell death," he said.

The researchers introduced free radicals into the brain of a mouse model for Alzheimer's and witnessed a worsening of the animal's memory and learning capabilities, as well as an increase in amyloid beta and tangles.

However, they also treated a subset of the mice with a compound known to block the TP receptor in the brain. In this group, said Praticὸ, there was no manifestation of the cognitive impairment experienced by the non-treated mice.

"This indirectly confirmed for us that the free radicals worked through this receptor," he said. "Using this compound, we were able to completely neutralize the biological consequences of the free radicals in terms of the amyloid beta production (plaques) and tau phosphorylation (tangles)."

Praticὸ said that the findings implicating oxidative stress and the TP receptor open an important chapter for Alzheimer's treatment.

"For the first time we have identified this receptor as the culprit responsible for the bad things that happen with the disease when high levels of oxygen free radicals are produced."

Praticὸ said that the TP receptor can now be considered a new target for therapies, and his group is working on developing additional compounds that even more efficiently block the receptor, making it unavailable to free radicals.
-end-
The study was funded through a grant from the Alzheimer's Art Quilt Initiative.

NOTE: Copies of this study are available to working journalists and may be obtained by contacting Preston M. Moretz in Temple University Communications at pmoretz@temple.edu.

Temple University

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.