Blocking immune cell treats new type of age-related diabetes

November 18, 2015

LA JOLLA--Diabetes is often the result of obesity and poor diet choices, but for some older adults the disease might simply be a consequence of aging. New research has discovered that diabetes--or insulin resistance--in aged, lean mice has a different cellular cause than the diabetes that results from weight gain (type 2). And the findings point toward a possible cure for what the co-leading scientists, Ronald Evans and Ye Zheng, are now calling a new kind of diabetes (type 4).

"A lot of diabetes in the elderly goes undiagnosed because they don't have the classical risk factors for type 2 diabetes, such as obesity," says Evans, director of Salk's Gene Expression Laboratory and senior author of the new paper, which was published November 18, 2015 in Nature. "We hope our discovery not only leads to therapeutics, but to an increased recognition of type 4 diabetes as a distinct disease."

In healthy people, the pancreas produces the hormone insulin, which signals to cells to take sugar out of the blood after a meal. In people with diabetes, however, the cycle is broken: either insulin is not produced in response to a meal or the muscle and liver cells don't respond to the insulin (also known as insulin resistance). In either case, sugar stays in the bloodstream for longer times, leading to a host of health issues ranging from loss of limbs to death.

Traditionally, diabetes has been grouped into the rarer type 1 disease, which most often appears in childhood when the pancreas stops producing insulin; and type 2, which is characterized by the body's failure to respond to insulin and most often attributed to being overweight. Both forms of the disease lead to high blood sugar levels. A third type of diabetes results in symptoms mimicking Alzheimer's. But Evans--after a thin, older family friend developed diabetes--wondered why some people developed the disease later in life without weight gain.

Evans, along with Zheng, an assistant professor in Salk's Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, and colleagues, set out to compare the immune systems of healthy mice, those with obesity-related diabetes and those with age-related diabetes. The mice with age-related disease, they found, had abnormally high levels of immune cells called T regulatory cells (Tregs) inside their fat tissue. Mice with obesity-related diabetes, on the other hand, had normal levels of Tregs within the tissue, despite having more fat tissue.

"We created a census of immune cells in the fat of these mice," says Sagar Bapat, a graduate student in the Evans and Zheng labs and first author of the new paper. "Simply by counting cell types, we immediately saw that there were more Tregs in the older mice with diabetes than any other group."

Normally, Bapat explains, Tregs help calm inflammation. Because fat tissue is constantly broken down and built back up as it stores and releases energy, it requires low levels of inflammation to constantly remodel itself. But as someone ages, the new research suggests, Tregs gradually accumulate within fat. And if the cells reach a tipping point where they completely block inflammation in fat tissue, they can cause fat deposits to build up inside unseen areas of the body, including the liver, leading to insulin resistance.

"It was a little bit surprising since normally Tregs are supposed to be beneficial for the body," says Zheng.

When the scientists blocked Treg cells from accumulating in the fat by targeting a molecule that the immune cells require, mice no longer developed type 4 diabetes in old age. However, if mice became obese, blocking the Tregs in fat did not prevent type 2 insulin resistance.

"It turns out that for this type of diabetes, the treatment is not losing weight," says Evans. "The treatment is actually losing these cells, and we show that it's possible to do that."

The researchers now want to find out exactly how Tregs interact with fat tissue and whether the immune cells accumulate in other organs during normal aging. They're also planning studies to see whether the results hold true in humans. "We're working with clinicians to get samples from older, lean people with diabetes to see if this cell type is also implicated in human disease," says Michael Downes, a senior staff scientist at Salk involved in the new study.
-end-
Other researchers on the study were Jae Myoung Suh, Sungsoon Fang, Sihao Liu, Yang Zhang, Albert Cheng, Carmen Zhou, Yuqiong Liang, Mathias LeBlanc, Annette R. Atkins and Ruth T. Yu of the Salk Institute; and Christopher Liddle of the University of Sydney.

The work and the researchers involved were supported by grants from the National Institutes of Health, Howard Hughes Medical Institute, National Health and Medical Research Council of Australia, the Glenn Foundation for Medical Research, the Leona M. and Harry B. Helmsley Charitable Trust, Ipsen/Biomeasure, California Institute for Regenerative Medicine, The Ellison Medical Foundation, the Nomis Foundation, the Rita Allen Foundation, the Emerald Foundation, the Hearst Foundation, the National Multiple Sclerosis Society, and the James B. Pendleton Charitable Trust.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probes fundamental life science questions in a unique, collaborative and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines. Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, MD, the Institute is an independent nonprofit organization and architectural landmark.

Salk Institute

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.