What salamanders can teach us about baseball

November 18, 2015

LOUISVILLE, Ky. - If a baseball player waits until he sees the ball arrive in front of him to swing his bat, he will miss miserably. By the time the batter sees the ball's position, plans his swing and moves the bat, the ball will be firmly in the catcher's mitt.

This time lag is known as sensorimotor delay. University of Louisville researcher Bart Borghuis, Ph.D., has increased our understanding of how people and animals deal with this delay in day-to-day interactions by analyzing the hunting skills of salamanders. His article, 'The Role of Motion Extrapolation in Amphibian Prey Capture,' is published in today's issue of The Journal of Neuroscience.

A skilled baseball player compensates for sensorimotor delay by predicting when the ball will cross the plate and starting his swing in time to meet it. Borghuis' research reveals the salamander also predicts the future location of its prey as it catches moving fruit flies by projecting its long, sticky tongue.

The sensorimotor delay is caused by the time it takes for the visual image to be processed by the retina, time to plan the motor action and time to activate the motion. When a salamander hopes to catch a moving fly, in the time it takes to make the strike -- about 230 milliseconds -- the fly will have moved from the location it was in when the salamander launched its attack. If the salamander sends its tongue to the location where it sees the fly, by the time the tongue gets there, the fly will be gone. Despite this delay, salamanders are efficient hunters, catching their prey more than 90 percent of the time in Borghuis' experiments.

Why are salamanders so effective in their attacks?

Borghuis, assistant professor in the Department of Anatomical Sciences and Neurobiology at UofL, and Anthony Leonardo, Ph.D., of the Howard Hughes Medical Institute, used high speed videography to capture 270 instances of salamanders striking at flies. Through analysis of the videos, Borghuis developed an algorithm that predicted where the salamander's tongue would strike based on the fly's path.

The algorithm mimics the salamanders' process using extrapolation to anticipate the prey's position in the future based on its bearing and velocity. The salamanders' tongue strikes were consistent with the algorithm, and were consistently successful -- unless the fly changed course between the time the salamander initiated the attack and the time of the actual strike.

In successful strikes, the salamander caught the fly by sending its tongue tip to the position where the fly was when the tongue arrived. When the salamanders missed, the salamander's tongue struck the location where the fly would have been had it continued on the same path it had been following. However, in these cases, the fly had changed direction after the salamander launched its attack.

"The misses confirmed the model," Borghuis said. "This is the first demonstration that the salamanders were making a prediction."

The tongue struck where the fly never had been, yet would have been had the fly continued its previous course of motion. Thus the salamander was predicting where the fly would be at the time the tongue reached it based on the fly's direction and speed.

"This information adds to a small set of clear examples of how vertebrates -- including humans -- use prediction for dealing with delays in motor processing," Borghuis said. "Now that we know how the salamander does this, we can further investigate the neuromechanisms that make this happen."
-end-


University of Louisville

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.