Forming planet observed for first time

November 18, 2015

An international team of scientists in Australia and the United States has captured the first-ever images of a planet in the making. The accumulation of dust and gas particles onto a new planet - the process by which the planet continues to form and grow - has been directly observed for the first time.

None of the nearly 1,900 planets previously discovered and confirmed outside our Solar System (called exoplanets) are in the process of formation.

The findings of the scientists, led by University of Arizona graduates Steph Sallum and Kate Follette and including the University of Sydney's Professor Peter Tuthill, are published today in Nature.

The YouTube video can be shared after the embargo lifts at https://www.youtube.com/watch?v=vp37oQgTmX4.

A star known as LkCa 15, located 450 light years from Earth, has been observed exhibiting all the trappings of an expectant parent: it is surrounded by a vast disc of dust and gas, making an ideal environment for planets to grow from; the dust shows distinct signs of disturbance - something within has eaten away part of the disc.

Co-author of the paper, Professor Tuthill, said the images provided unambiguous evidence. "This is the first time we've imaged a planet that is definitely still in the process of forming."

The photo provided the proof: "The difficulty had been that when you have indirect evidence, there are always alternate explanations that might fit the data," Professor Tuthill said.

Researchers are just now being able to image objects that were close to and much fainter than a nearby star, thanks to specialised instruments. These include the Large Binocular Telescope - the world's largest telescope, located on Arizona's Mount Graham - and the University of Arizona's Magellan Telescope and its Adaptive Optics System, MagAO, located in Chile.

Capturing sharp images of distant objects was challenging, in large part because of atmospheric turbulence, said Professor Laird Close, Dr Follette's graduate adviser.

"When you look through the Earth's atmosphere, what you're seeing is cold and hot air mixing in a turbulent way that makes stars shimmer," Professor Close said. "To a big telescope, it's a fairly dramatic thing; you see a horrible looking image." The breakthrough was possible because the Large Binocular Telescope was purpose-built, incorporating a novel imaging technique to sharpen the images.

Meanwhile, Professor Close and Dr Follette used Magellan's adaptive optics system MagAO independently to corroborate the discovery. Using MagAO's unique ability to work in visible wavelengths, they captured the planet's 'hydrogen alpha' spectral fingerprint, the specific wavelength of light that LkCa 15 and its planets emit as they grow.

When cosmic objects are forming, they get extremely hot, and because they are forming from hydrogen, those objects all glow a deep red, which astronomers refer to as H-alpha, a particular wavelength of light.

That single shade of red light was emitted by both the planet and the star as they underwent the same growing process, Dr Follette said.

"We were able to separate the light of the faint planet from the light of the much brighter star and to see that they were both growing and glowing in this very distinct shade of red," she said.

Professor Tuthill said the results were only made possible because of the application of a lot of very advanced new technology to the business of imaging the stars.

"It's fantastic to see these cutting-edge instruments now enabling us to make such exciting discoveries," Professor Tuthill said.

The paper, 'Accreting Protoplanets in the LkCa 15 Transition Disc', was published in Nature at 5am on 19 November Australian Eastern Daylight Time. [The paper can be viewed before the embargo upon request.]

Paper will be available at http://www.nature.com/articles/doi:10.1038/nature15761
-end-


University of Sydney

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.