Nav: Home

APOL1 linked to reduced nephrocyte function, increased cell size, accelerated cell death

November 18, 2016

WASHINGTON, DC - A Children's National Health System research team has uncovered a novel process by which the gene APOL1 contributes to renal disease, according to a paper published November 18 in the Journal of the American Society of Nephrology. Mutated versions of the APOL1 gene render people of African descent at heightened risk of developing chronic kidney disease. Employing powerful genetic approaches, Children's National researchers were able to mimic APOL1 renal cell pathology in the fruit fly Drosophila melanogaster. This opens the door to pinpointing other proteins that interact with APOL1, a vital first step toward identifying medicines to treat renal diseases that currently have no drug therapy.

"This is one of the hottest research topics in the kidney field. We are the first group to generate this result in fruit flies," says Zhe Han, PhD, a senior Drosophila specialist and associate professor in the Center for Cancer & Immunology Research at Children's. Han, senior author of the paper, will present the study results this week during Kidney Week 2016, the American Society of Nephrology's annual gathering in Chicago that is expected to draw more than 13,000 kidney professionals from around the world.

The advantages of Drosophila for biomedical research include its rapid generation time and an unparalleled wealth of sophisticated genetic tools to probe deeply into fundamental biological processes underlying human diseases. People of African descent frequently inherit a mutant version of the APOL1 gene that affords protection from African sleeping sickness, but is associated with a 17- to 30-fold greater chance of developing certain types of kidney disease. That risk is even higher for individuals infected with the human immunodeficiency virus (HIV). Drosophila renal cells, called nephrocytes, accurately mimic pathological features of human kidney cells during APOL1-associated renal disease.

"Nephrocytes share striking structural and functional similarities with mammalian podocytes and renal proximal tubule cells, and therefore provide us a simple model system for kidney diseases," says Han, who has studied the fruit fly for 20 years and established the fly nephrocyte as a glomerular kidney disease model in 2013 with two research papers in the Journal of the American Society of Nephrology.

In this most recent study, Han's team cloned a mutated APOL1 gene from podocyte cells cultured from a patient with HIV-associated nephropathy. They created transgenic flies making human APOL1 in nephrocytes and observed that initially the transgene caused increased cellular functional activity. As flies aged, however, APOL1 led to reduced cellular function, increased cell size, abnormal vesicle acidification, and accelerated cell death.

"The main functions of nephrocytes are to filter proteins and remove toxins from the fly's blood, to reabsorb protein components, and to sequester harmful toxins. It was surprising to see that these cells first became more active and temporarily functioned at higher levels," says Han. "The cells got bigger and stronger but, ultimately, could not sustain that enhancement. After swelling to almost twice their normal size, the cells died. Hypertrophy is the way that the human heart responds to stress overload. We think kidney cells may use the same coping mechanism."

The Children's research team is a multidisciplinary group with members from the Center for Cancer & Immunology Research, the Center for Genetic Medicine Research, and the Division of Nephrology.The team also characterized fly phenotypes associated with APOL1 expression that will facilitate the design and execution of powerful Drosophila genetic screening approaches to identify proteins that interact with APOL1 and contribute to disease mechanisms. Such proteins represent potential therapeutic targets. Currently, transplantation is the only option for patients with kidney disease linked to APOL1.

"This is only the beginning," Han says. "Now, we have an ideal pre-clinical model. We plan to start testing off-the-shelf therapeutic compounds, for example different kinase inhibitors, to determine whether they block any of the steps leading to renal cell disease."
-end-


Children's National Health System

Related Kidney Disease Articles:

Combating chronic kidney disease with exercise
A University of Delaware research team is combating chronic kidney disease (CKD) with exercise.
A new mutation in kidney disease
Osaka University researchers find an unexpected mutation in proteins of the exosome could be a valuable biomarker for diagnosing the risk of kidney disease.
New answers for kids with inherited kidney disease
A new gene behind a rare form of inherited childhood kidney disease has been identified by a global research team.
Revealed: The biochemical pathways of kidney disease
In a study, recently published in PLOS Genetics, Chiara Gamberi and her coauthors developed an innovative fruit fly-based model of the types of harmful cysts that can form on kidneys.
Forging new defenses against diabetic kidney disease
Scientists at Joslin Diabetes Center have revealed an unexpected route to slow the progression of diabetic kidney disease, targeting a biological pathway that is the main channel for the metabolism of glucose in the cell.
Kidney disease is a major cause of cardiovascular deaths
In 2013, reduced kidney function was associated with 4 percent of deaths worldwide, or 2.2 million deaths.
A kidney disease's genetic clues are uncovered
Researchers at Columbia University Medical Center have identified genes that are linked to the underlying molecular defect in people with IgA nephropathy, an autoimmune kidney disease.
Beating kidney disease together
Chronic kidney disease is a frequently encountered disorder: more than 10% of the population suffer from such problems.
Reflux and ulcer medications linked to kidney stones and chronic kidney disease
Individuals who took proton pump inhibitors or histamine receptor-2 blockers for heartburn, acid reflux, or ulcers had elevated risks of developing kidney stones.
Method to create kidney organoids from patient cells provides insights on kidney disease
Scientists have developed a method to coax human pluripotent stem cells to mature into cells that go on to form the functional units of the kidney.

Related Kidney Disease Reading:

What You Must Know About Kidney Disease: A Practical Guide to Using Conventional and Complementary Treatments
by Rich Snyder (Author)

The Doctor's Kidney Diets: A Nutritional Guide to Managing and Slowing the Progression of Chronic Kidney Disease
by Mandip S. Kang MD (Author)

Coping with Kidney Disease: A 12-Step Treatment Program to Help You Avoid Dialysis
by Mackenzie Walser (Author), Betsy Thorpe (Author)

Renal Diet Cookbook for the Newly Diagnosed: The Complete Guide to Managing Kidney Disease and Avoiding Dialysis
by Susan Zogheib MHS RD LDN (Author), Jay Wish MD (Foreword)

National Kidney Foundation Primer on Kidney Diseases
by Scott Gilbert MD (Author), Daniel E. Weiner MD MS (Author)

Renal Diet Cookbook: The Low Sodium, Low Potassium, Healthy Kidney Cookbook
by Susan Zogheib (Author), John Wigneswaran (Author)

Renal Diet Plan and Cookbook: The Optimal Nutrition Guide to Manage Kidney Disease
by Rockridge Press (Publisher)

Biomarkers in Kidney Disease (Biomarkers in Disease: Methods, Discoveries and Applications)
by Vinood B. Patel (Editor), Victor R. Preedy (Editor)

Smoothies for Kidney Health: A Delicious Approach to the Prevention and Management of Kidney Problems & So Much More
by Victoria L. Hulett JD JD (Author), Jennifer L. Waybright RN (Author)

Kidney Disease: A Guide for Living
by Walter A. Hunt PhD (Author), Ronald D. Perrone MD (Foreword)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...