Helping Marvel superheroes to breathe

November 18, 2018

WASHINGTON, D.C., November 18, 2018 -- Marvel comics superheroes Ant-Man and the Wasp -- nom de guerre stars of the eponymous 2018 film -- possess the ability to temporarily shrink down to the size of insects, while retaining the mass and strength of their normal human bodies. But a new study suggests that, when bug-sized, Ant-Man and the Wasp would face serious challenges, including oxygen deprivation.

Those challenges, along with their solution-microfluidic technologies, will be described by engineering mechanics graduate student Max Mikel-Stites of Virginia Tech at the American Physical Society's Division of Fluid Dynamics 71st Annual Meeting, which will take place Nov. 18-20 at the Georgia World Congress Center in Atlanta, Georgia.

Mikel-Stites and his advisor, Anne Staples, an associate professor in the biomedical engineering and mechanics department at Virginia Tech, normally study biological fluid dynamics, with a particular focus on insect respiration and insect-scale fluid flows. Staples' lab has developed microfluidic devices inspired by insect respiratory systems in which the flow rate and direction of flow through individual channels in the device can be controlled without the use of valves.

The work, which will be discussed in a separate presentation at the DFD meeting, could reduce the actuation machinery needed for microfluidic devices used in many different scientific fields, and make them more portable and cost-efficient. "Applying that perspective to Ant-Man and the Wasp seemed like a straightforward thing to do," said Mikel-Stites.

In their analysis, the researchers determined that the atmospheric density -- basically, the number of molecules (say, of oxygen) in a given volume of air -- experienced by the bug-sized heroes is reduced to a level nearly identical to that of Mt. Everest's so-called "death zone," where there is not enough oxygen for a human to breathe. "While the actual atmospheric density is the same for an insect and a human, the subjective atmospheric density experienced by a human who shrinks to insect size changes," Mikel-Stites explained. "For example, a normal-sized person taking a deep breath can expect to inhale some number of oxygen molecules. However, when that person is shrunk down to the size of an ant, despite still needing the same number of oxygen molecules, far fewer are available in a single breath of air.

The "death zone" begins for a normal-sized human about 8,000 meters above sea level. The shrunken superheroes, the researchers calculated, would feel like they were at an altitude of 7,998 meters, and that would make for a serious -- if not deadly -- case of altitude sickness.

"For someone not acclimated, symptoms of altitude sickness range from headache and dizziness to the buildup of fluid in the lungs and brain, and possibly death. This occurs in part because people may respond by trying to breathe more rapidly, to increase their oxygen intake, and because the body is attempting to function with less oxygen than it normally does," he said.

And that's not the extent of Ant-Man's and the Wasp's problems, the team found. Based on a relationship known as Kleiber's law, which correlates the metabolic rate of an animal to its size, the researchers found that the metabolic rates per unit mass of the superheroes at bug size would increase by approximately two orders of magnitude -- as would their oxygen demands.

But all is not lost -- thanks to science. According to Mikel-Stites, the use of microfluidic components such as Knudsen pumps (which are driven by temperature gradients) and microscale gas compressors, could be embedded into the helmets of Ant-Man and the Wasp to help them breathe at the microscale.

Presentation E19.3, "Why Ant-Man and the Wasp Need Helmets to Breathe" by Maxwell Mikel-Stites and Anne Staples, will be Sunday, Nov. 18, 5:36 p.m. in Room B306 of the Georgia World Congress Center in Atlanta. Abstract:


Main meeting website:


At the Annual Meeting, The Gallery of Fluid Motion will consist of posters and videos submitted by attendees illustrating the science and beauty of fluid motion. More information can be found here:


We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact Rhys Leahy or the">AIP Media Line, 301-209-3090. We can also help with setting up interviews and obtaining images, sound clips or background information.


A press briefing featuring a selection of newsworthy research will be webcast live from the conference Monday, Nov. 19. Times and topics to be announced. Members of the media should register in advance at


The Division of Fluid Dynamics of the American Physical Society, established in 1947, exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. For more information about DFD, visit


The American Physical Society (APS) is a nonprofit membership organization working to advance and diffuse the knowledge of physics through its outstanding research journals, scientific meetings, and education, outreach, advocacy, and international activities. APS represents over 55,000 members, including physicists in academia, national laboratories, and industry in the United States and throughout the world. For more information about APS, visit

American Physical Society

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to