New dual-action cancer-killing virus

November 18, 2018

Scientists have equipped a virus that kills carcinoma cells with a protein so it can also target and kill adjacent cells that are tricked into shielding the cancer from the immune system.

It is the first time that cancer-associated fibroblasts within solid tumours - healthy cells that are tricked into protecting the cancer from the immune system and supplying it with growth factors and nutrients - have been specifically targeted in this way.

The researchers, who were primarily funded by the Medical Research Council (MRC) and Cancer Research UK, say that if further safety testing is successful, the dual-action virus - which they have tested in human cancer samples and in mice - could be tested in humans with carcinomas as early as next year.

Currently, any therapy that kills the 'tricked' fibroblast cells may also kill fibroblasts throughout the body - for example in the bone marrow and skin - causing toxicity.

In this study, published in the journal Cancer Research, the researchers used a virus called enadenotucirev, which is already in clinical trials for treating carcinomas. It has been bred to infect only cancer cells, leaving healthy cells alone.

They added genetic instructions into the virus that caused infected cancer cells to produce a protein called a bispecific T-cell engager.

The protein was designed to bind to two types of cells and stick them together. In this case, one end was targeted to bind to fibroblasts. The other end specifically stuck to T cells - a type of immune cell that is responsible for killing defective cells. This triggered the T cells to kill the attached fibroblasts.

Dr Joshua Freedman, from the Department of Oncology at the University of Oxford, who was first author on the study said: "We hijacked the virus's machinery so the T-cell engager would be made only in infected cancer cells and nowhere else in the body. The T-cell engager molecule is so powerful that it can activate immune cells inside the tumour, which are being supressed by the cancer, to attack the fibroblasts."

Dr Kerry Fisher, from the Department of Oncology at the University of Oxford, who led the research said: "Even when most of the cancer cells in a carcinoma are killed, fibroblasts can protect the residual cancer cells and help them to recover and flourish. Until now, there has not been any way to kill both cancer cells and the fibroblasts protecting them at the same time, without harming the rest of the body.

"Our new technique to simultaneously target the fibroblasts while killing cancer cells with the virus could be an important step towards reducing immune system suppression within carcinomas and should kick-start the normal immune process.

"These viruses are already undergoing trials in people, so we hope our modified virus will be moving towards clinical trials as early as next year to find out if it is safe and effective in people with cancer."

The scientists successfully tested the therapy on fresh human cancer samples collected from consenting patients, including solid prostate cancer tumours which reflect the complex make-up of real tumours. They also tested the virus on samples of healthy human bone marrow and found it did not cause toxicity or inappropriate T cell activation.

Dr Nathan Richardson, head of molecular and cellular medicine at the MRC said: "Immunotherapy is emerging as an exciting new approach to treating cancers. This innovative viral delivery system, which targets both the cancer and surrounding protective tissue, could improve outcomes for patients whose cancers are resistant to current treatments. Further clinical studies will be crucial to determine that the stimulation of the patient's immune system does not produce unintended consequences".

Dr Michelle Lockley, Cancer Research UK's expert on immunotherapy, said: "Using the power of the body's own immune system to tackle cancer is a growing area of research. This work in human tumour samples is encouraging, but can be complicated - one of the biggest challenges of immunotherapies is predicting how well they will work with the patient's immune system, and understanding what the side effects could be. The next stage will be using clinical trials to test whether this is both a safe and effective way to treat the disease in people."

The virus targets carcinomas, which are the most common type of cancer and start in cells in the skin or in tissues that line or cover internal organs, such as the pancreas, colon, lungs, breasts, ovaries and prostate.
-end-


Medical Research Council

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.