Gene therapy: Development of new DNA transporters

November 18, 2019

Scientists at the Institute of Pharmacy at Martin Luther University Halle-Wittenberg (MLU) have developed new delivery vehicles for future gene therapies. A team of researchers led by Dr Christian Wölk are using artificial fats to transport DNA into cells. The scientists demonstrate how well this technique works in a study conducted in collaboration with pharmacists from the University of Marburg. The study has been published in "Biomaterials Science".

Gene therapy is the only treatment for people with diseases caused by genetic defects. In theory, a defective gene is replaced by a healthy one, thus eliminating the cause of the disease. Congenital immunodeficiencies, congenital blindness and sickle cell anaemia could all be treated in this way. Even cancer cells could be rendered harmless through genetic modification. However, the treatment method has suffered many practical setbacks and, up until now, only six gene therapies have been approved in Europe.

In addition to producing the required gene sections, one of the biggest hurdles is transporting the DNA into the cell and to its destination in the body. The few gene therapies approved to date use modified viruses to do this. These viruses infect the cell and introduce the DNA. However, this method entails risks since the viruses can trigger a violent immune reaction. They are also very costly and time-consuming to produce.

Dr Christian Wölk's junior research group at the Institute of Pharmacy at MLU under the leadership of Prof Andreas Langner is therefore working on a new system for introducing DNA into the body's cells. "Non-viral systems are very appealing because they are easy to produce," says Wölk. The only drawback is that their effect diminishes over time and they must be re-administered. His research group uses liposomes, fat bubbles that are already used as carriers for various other drugs. They combine with nucleic acids in the DNA to form so-called lipoplexes. They fuse to the cell membrane and release their content into the cell.

The pharmacists in Halle have developed four artificial fats (lipids) that are suitable for DNA transport. One, the lipid DiTT4, is now entering the next phase of preclinical trials. If these trials are successful, clinical studies on humans will follow. "The most recent studies have been very promising," says Wölk. The lipid is able to encapsulate nucleic acids, protect them from enzymatic degradation and introduce them very efficiently into cells. According to pharmacist Julia Giselbrecht, one important aspect of the technique is that it does not require co-lipids. "This advantage enables simple, reproducible production, which is necessary for later clinical applications." Along with Dr Shashank R. Pinnapireddy from the University of Marburg, Giselbrecht is the lead author of the study which has been published in Biomaterials Science.

However, there are still a few challenges to overcome. For example, researchers still need to clarify which cells DiTT4 releases its load into when it is injected directly into the body. Therapies that have already been approved usually modify the cells outside the body before injecting them into the body. However, because DiTT4 is so compatible with blood components, systemic application would be possible, explains Giselbrecht.

Wölk is therefore confident that the lipids developed in Halle will be used for gene therapies in the future. "We are convinced the system works," says Wölk. In addition to Philipps University Marburg, the University of Leiden is also participating in the research project. Wölk is also planning to conduct research on the subject at the University of Leipzig.

Martin-Luther-Universität Halle-Wittenberg

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to