Nav: Home

Quantum computers learn to mark their own work

November 18, 2019

  • Quantum computers can potentially answer questions beyond the capabilities of classical computing - but their answers might not be reliable
  • University of Warwick scientists have developed a protocol for quantum computers to measure how close their answers are to the correct ones
  • Checking whether these answers are correct using classical methods is extremely resource-intensive
  • Could be used in confirming whether a quantum computer has outperformed classical computers, so-called quantum supremacy
A new test to check if a quantum computer is giving correct answers to questions beyond the scope of traditional computing could help the first quantum computer that can outperform a classical computer to be realised.

By creating a protocol that allows a quantum computer to check its own answers to difficult problems, the scientists from the University of Warwick have provided a means to confirm that a quantum computer is working correctly without excessive use of resources.

Samuele Ferracin, Theodoros Kapourniotis and Dr Animesh Datta from the University's Department of Physics have recently tackled this problem in a paper for The New Journal of Physics, published today (18 November).

The researchers have developed a protocol to quantify the effects of noise on the outputs of quantum computers. Noise is defined as anything that affects a quantum machine's hardware but is beyond the user's control, such as fluctuations in temperature or flaws in the fabrication. This can affect the accuracy of a quantum computer's results.

When applied, the researchers' test produces two percentages: how close it estimates the quantum computer is to the correct result and how confident a user can be of that closeness.

The test will help the builders of quantum computers to determine whether their machine is performing correctly to help refine their performance, a key step in establishing the usefulness of quantum computing in the future.

Dr Animesh Datta from the University of Warwick Department of Physics said: "A quantum computer is only useful if it does two things: first, that it solves a difficult problem; the second, which I think is less appreciated, is that it solves the hard problem correctly. If it solves it incorrectly, we had no way of finding out. So what our paper provides is a way of deciding how close the outcome of a computation is to being correct."

Determining whether a quantum computer has produced a correct answer to a difficult problem is a significant challenge as, by definition, these problems are beyond the scope of an existing classical computer. Checking that the answer it has produced is correct typically involves using a large number of classical computers to tackle the problem, something that is not feasible to do as they tackle ever more challenging problems.

Instead, the researchers have proposed an alternative method that involves using the quantum computer to run a number of easy calculations that we already know the answer to and establishing the accuracy of those results. Based on this, the researchers can put a statistical boundary on how far the quantum computer can be from the correct answer in the difficult problem that we want it to answer, known as the target computation.

It is a similar process to that which computer programmers use to check large computer programs, by putting in small functions with known answers. If the program answers enough of these correctly then they can be confident that the whole program is correct.

Dr Datta adds: "The whole point of having a quantum computer is to not spend an exponential amount of time solving problems, so taking an exponential amount of time to check whether it's correct or not defeats the point of it. So our method is efficient in that it doesn't require an exponential amount of resources.

"We do not need a classical computer to check our quantum computer. Our method is self-contained within a quantum system that can be used independently of large servers."

Lead author Samuele Ferracin has been developing ways for scientists working on quantum computers to incorporate the test into their work. He said: "We have spent the last few years thinking about new methods to check the answers of quantum computers and proposing them to experimentalists. The first methods turned out to be too demanding for the existing quantum computers, which can only implement 'small' computations and perform restricted tasks. With our latest work we have successfully developed a method that suits existing quantum computers and encompasses all their main limitations. We are now collaborating with experimentalists to understand how it performs on a real machine."

Quantum computing harnesses the unusual properties of quantum physics to process information in a wholly different way to conventional computers. Taking advantage of the behaviour of quantum systems, such as existing in multiple different states at the same time, this radical form of computing is designed to process data in all of those states simultaneously, lending it a huge advantage over classical computing. Certain kinds of problems, like those found in codebreaking and in chemistry, are particularly suited to exploiting this property.

The last few years have seen unprecedented experimental advances. The largest quantum computers are doubling in size every six months and seem now very close to achieve quantum supremacy. Quantum supremacy refers to a milestone in the development of quantum computers, where a quantum computer first performs a function that would require an unreasonably large amount of time using a classical computer.

Dr Datta adds: "What we are interested in is designing or identifying ways of using these quantum machines to solve hard problems in physics and chemistry, to design new chemicals and materials, or identify materials with interesting or exotic properties. And that is why we are particularly interested in the correctness of the computation."
The research was supported by the Engineering and Physical Sciences Research Council, part of UK Research and Innovation, in the UK.
  • 'Accrediting outputs of noisy intermediate-scale quantum computing devices' is published in the New Journal of Physics, DOI: 10.1088/1367-2630/ab4fd6
Notes to editors:

For interviews or a copy of the paper contact:

Alice Scott
Media Relations Manager - Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221

About the NQIT Hub

The Networked Quantum Information Technologies Hub (NQIT), a consortium led by Oxford University and including the universities of Bath, Cambridge, Edinburgh, Leeds, Southampton, Strathclyde, Sussex and Warwick, is primarily focused on the development of quantum computing hardware, and represents the UK's strongest option for leading the world into the next era of computing. NQIT is working towards building a quantum computer demonstrator which demonstrates a networked, hybrid light-matter approach to quantum information processing. As of December 2019, the NQIT Hub will be succeeded by the Quantum Computing and Simulation (QCS) Hub, which will continue this work to develop a quantum computer demonstrator.

About the UK National Quantum Technologies Programme

NQIT is part of the National Quantum Technologies Programme, part of the UK National Quantum Technologies Programme (UKNQT), is a £270 million investment by the UK government to establish a quantum technology industry in the UK. It is designed to foster the translation of quantum science into commercial technological applications, with the aim of boosting the UK economy and resulting in demonstrable effects across all spheres of everyday life.

University of Warwick

Related Quantum Computers Articles:

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.
Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.
Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.
FEFU scientists developed method to build up functional elements of quantum computers
Scientists from Far Eastern Federal University (FEFU, Vladivostok, Russia), together with colleagues from FEB RAS, China, Hong Kong, and Australia, manufactured ultra-compact bright sources based on IR-emitting mercury telluride (HgTe) quantum dots (QDs), the future functional elements of quantum computers and advanced sensors.
ORNL researchers advance performance benchmark for quantum computers
Researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) have developed a quantum chemistry simulation benchmark to evaluate the performance of quantum devices and guide the development of applications for future quantum computers.
Quantum computers learn to mark their own work
A new test to check if a quantum computer is giving correct answers to questions beyond the scope of traditional computing could help the first quantum computer that can outperform a classical computer to be realised.
Blanket of light may give better quantum computers
Researchers from DTU Physics describe in an article in Science, how--by simple means -- they have created a 'carpet' of thousands of quantum-mechanically entangled light pulses.
One step closer future to quantum computers
Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements.
Dartmouth research advances noise cancelling for quantum computers
The characterization of complex noise in quantum computers is a critical step toward making the systems more precise.
Spreading light over quantum computers
Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer.
More Quantum Computers News and Quantum Computers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.