Virtual 'moonwalk' for science reveals distortions in spatial memory

November 18, 2019

In order to remember where important events happened, or how to get from A to B, our brains form mental "maps" of our environment. An important component of these mental maps are the so-called grid cells. Different grid cells are active when we occupy different locations in an environment, creating a characteristic pattern of activity. This pattern consists of equilateral triangles that form a symmetrical grid structure. The discovery of grid cells, in the brains of rats, was awarded the Nobel Prize in 2014. Scientists suspect the same is true in human brains. Our mental maps and grid patterns formed from grid cells allow us to remember where a certain place is located and determine how far away it is from other locations. This should all work well if the grid patterns are symmetrical and regular.

However, if the patterns are disturbed, our mental maps may become inaccurate. A team of researchers from the Max Planck Institute for Cognitive and Neurosciences in Leipzig, University College London, and the Kavli Institute for Systems Neurosciences in Norway have pursued this idea. In an earlier experiment, by English neuroscientists, the activity of grid cells in rats was recorded while they made their way through different enclosures. It became clear that under certain circumstances the grid cells lost their hexagonal symmetry and "fired" more irregularly. If the animal navigated through a square box, the perfect grid pattern in the rat brain could be detected. However, if it moved through a trapezoidal enclosure, the grid pattern was far less regular.

The coordinate system of the grid cells in rats seemed to be distorted under these circumstances. Could this have consequences for the accuracy of our mental maps? "It should lead to distortions in our memory, if our brain really uses this coordinate system," thought Christian Doeller and colleagues. "We have therefore carried out an experiment, with virtual reality, in which the test subjects learn different positions in space. They first do this in a square environment, where the coordinate system should work well, and then in a trapezoidal environment, where the coordinate system of the grid cells should get distorted", explains Jacob Bellmund.

The participants wore virtual reality glasses and navigated through the virtual environments using a 360° motion platform. Each environment contained six objects and they learned which object belonged at which position in the environment. The platform provided a realistic running sensation, with their feet gliding over it in a kind of "moonwalk" (see video). In actuality, the participants only got off the ground in the virtual world. "We then compared how exactly the participants were able to learn the positions. As expected, they were worse in the trapezoidal environment than in the square one. In the trapezoidal environment, they were especially bad in the narrow half. This would correspond exactly to the area with the biggest distortions of the grid cell coordinate system," explains Bellmund.

The scientists then wanted to know whether these distortions would remain in memory, even if the participants were no longer in the asymmetrical environment. Meaning, their mental coordinate system should be 'square' again. To do this, they asked participants to estimate the distance between pairs of objects. Bellmund and his team had arranged the objects in such a way that the actual distance between the pairs was always identical. But, if there were distortions in the participants' memories the same distances should be recalled as shorter when recalling the trapezoid objects than those in the square. Within the trapezoid, the distances were remembered as longer in the narrow half than in the wide half. Thus, memories that were learned within a distorted coordinate system are also distorted when remembered later. It is precisely these distortions of our mental maps that we can predict with a model coordinate system," says Jacob Bellmund.

Previous work by the MPI scientists has suggested that the brain not only creates mental maps to find its way, but that other cognitive processes are also overlaid on our brain's navigational system.
-end-
Link to the paper: https://www.nature.com/articles/s41562-019-0767-3

Max Planck Institute for Human Cognitive and Brain Sciences

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.