Antibiotic resistance surveillance tools in Puerto Rican watersheds after Hurricane Maria

November 18, 2020

When Hurricane Maria made landfall, devastating Dominica, St. Croix, and Puerto Rico in September 2017, flooding and power outages wreaked havoc on the debilitated land, resulting in the contamination of waterways with untreated human waste and pathogenic microorganisms.

Six months after the deadly Category 5 hurricane, Virginia Tech civil and environmental engineering Professor Amy Pruden led a team of Virginia Tech researchers, including Maria Virginia Riquelme and William Rhoads, then post-doctoral researchers, who packed their bags and lab supplies and headed to Puerto Rico.

The island territory of the United States located in the northeast of the Caribbean Sea had been devastated, plunging its 3.4 million inhabitants into crisis. The mass destruction presented a critical opportunity for the researchers to study how wastewater infrastructure damage might contribute to the spread of antibiotic resistance -- a growing global public health threat.

In a study published in American Chemical Society's Journal of Environmental Science & Technology, Virginia Tech researchers and international collaborators have further developed an innovative antibiotic resistance surveillance approach by applying DNA sequencing techniques to detect the spread of disease in watersheds impacted by large-scale storms.

"This study is a critical step toward establishing a unified and comprehensive surveillance approach for antibiotic resistance in watersheds," said Pruden, the W. Thomas Rice Professor of Civil and Environmental Engineering. "Ideally, it can be applied as a baseline to track disturbances and public health concerns associated with future storms."

Over the past decade, Pruden, a microbiologist and environmental engineer, has worked with her students using next-generation DNA sequencing, a specialty of Pruden's, to examine Legionella strains as they operate before, during, after, and outside of Legionnaires' disease outbreaks in various towns and cities across the country, including Flint, Michigan.

With RAPID funding from the National Science Foundation and collaborating with principal investigator Christina Bandoragoda, research scientist at the University of Washington with expertise in watershed modeling and geospatial analysis, Virginia Tech researchers teamed up with Graciela Ramirez Toro, professor and director of the Centro de Educación, Conservación e Interpretación Ambiental, and her research group at the local Interamerican University in San German, Puerto Rico. Together, they identified three sampling sites in watersheds with distinct land-use patterns and levels of wastewater input that were ideal for tracking down geospatial patterns in occurrence of bacterial genes that cause antibiotic resistance.

Pruden's doctoral student and first author of the paper Benjamin Davis used a method called shotgun metagenomic DNA sequencing to detect antibiotic resistance genes in river water samples from three watersheds, including samples collected by hiking to far upstream pristine reaches of the watersheds and downstream of three wastewater treatment plants. Metagenomics is the study of genetic material recovered directly from environmental samples.

Analysis of the data revealed that two anthropogenic antibiotic resistance markers -- DNA sequences associated with human impacts to the watershed -- correlated with a distinct set of antibiotic resistance genes, relative to those that correlated specifically with human fecal markers.

A clear demarcation of wastewater treatment plant influence on the antibiotic resistance gene profiles was apparent and levels were elevated downstream of wastewater treatment plants, resulting in a high diversity of genes impacting resistance to clinically important antibiotics, such as beta lactams and aminoglycosides, in the watershed samples. Some of the beta lactam resistance genes detected were associated with deadly antibiotic-resistant infections in the region and showed evidence of being able to jump across bacterial strains. Beta lactam resistance genes were also noted to be more accurately predicted by anthropogenic antibiotic resistance markers than human fecal markers.

Although baseline levels of antibiotic resistance genes in Puerto Rican watersheds prior to Hurricane Maria are unknown, surveillance methodologies like these could be used to assess future impacts of major storms on the spread of antibiotic resistance, the researchers said.

Many international communities will likely not have access to sophisticated metagenomic-based monitoring tools in the near future, but the identification of single gene targets, such as the anthropogenic antibiotic resistance markers, make watershed surveillance of antibiotic resistance much more accessible. And such genes can be quantified directly by quantitative polymerase chain reaction, yielding cost-effective, rapid results in less than a day.

Virginia Tech

Related Antibiotic Resistance Articles from Brightsurf:

Discovery promising for millions at risk from antibiotic resistance
There is new hope for approximately 700,000 people who die each year from antibiotic resistant infections, with University of Queensland researchers discovering how bacteria share antibiotic-resistance genes.

Pollution linked to antibiotic resistance
Antibiotic resistance is an increasing health problem, but new research suggests it is not only caused by the overuse of antibiotics.

Antibiotic resistance and the need for personalized treatments
Scientists have discovered that the microbiota of each individual determines the maintenance of antibiotic resistant bacteria in the gut: whereas in some individuals resistant bacteria are quickly eliminated, in others they are not.

One of the mechanisms of Staphylococcus antibiotic resistance deciphered
The Russian side is represented by Structural Biology Lab (Kazan Federal University) and Institute of Proteins (Russian Academy of Sciences).

Antibiotic-resistance in Tanzania is an environmental problem
WSU study finds that environmental transmission rather than antibiotic use explains the presence of antibiotic-resistant bacteria in people, domestic animals and wildlife.

Stressed-out dust is sharing antibiotic resistance genes
A new Northwestern University study is the first to find that bacteria living in household dust can spread antibiotic resistance genes.

Cause of antibiotic resistance identified
Bacteria can change form in human body, hiding the cell wall inside themselves to avoid detection.

The solution to antibiotic resistance could be in your kitchen sponge
Researchers from the New York Institute of Technology (NYIT) have discovered bacteriophages, viruses that infect bacteria, living in their kitchen sponges.

Antibiotic resistance in spore-forming probiotic bacteria
New research has found that six probiotic Bacillus strains are resistant to several antibiotics.

How bacteria acquire antibiotic resistance in the presence of antibiotics
A new study's disconcerting findings reveal how antibiotic resistance is able to spread between bacteria cells despite the presence of antibiotics that should prevent them from growing.

Read More: Antibiotic Resistance News and Antibiotic Resistance Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to