Diabetes increases neuritic damage around amyloid plaques in Alzheimer's disease

November 18, 2020

New research from the University of Eastern Finland explores the role of diabetes in the cellular and molecular changes underlying Alzheimer's disease (AD). In an AD mouse model, diabetes induced through a diet rich in fats and sugars weakened the accumulation of microglial cells around amyloid plaques and increased the formation of neuritic plaques with prominent tau pathology. Besides the mouse model, a similar observation was also made in hydrocephalus patients with type 2 diabetes, who had fewer microglia around amyloid plaques than patients without diabetes. The findings provide valuable new insight into the cellular mechanisms by which type 2 diabetes contributes to the risk and development of AD.

Alzheimer's disease is the most common form of dementia, with no cure to date. AD is characterised by the accumulation of beta-amyloid peptides and phosphorylated tau proteins in the brain, leading to the activation of the immune cells in brain: microglia and astrocytes. AD also causes damage to axons and dendrites and, ultimately, leads to neuronal cell death. Recent genetic studies suggest that microglia play a key role in the development of AD. In addition to genetics, environmental and lifestyle factors, and diseases associated with them, such as type 2 diabetes, affect the risk of AD. Type 2 diabetes has long been known to increase the risk of AD and to influence the disease course, but the underlying cellular and molecular events are still elusive.

In the new study, transgenic AD model mice were put on a six-month regimen resembling the typical Western diet, i.e. one that is rich in fats and sugars, and this led to the development of diabetes in the mice. In behavioural analysis, diabetic mice showed impaired learning and memory compared to mice on standard diet. Bulk RNA expression analysis of brain samples of the mice suggested weakened response of microglial cells to amyloid-β, as well as attenuation of Trem2 and PI3K-Akt signalling pathways. Immunohistochemical analyses of entorhinal and hippocampal brain sections supported these findings, as the diabetic mice had fewer microglia and more dystrophic neurites around amyloid plaques than mice on the standard diet.

"This study sheds new light on the cellular level how diabetes contributes to the development of AD, and specifically highlights the importance of brain immune cells in the disease process. Our findings suggest that diabetes can weaken the ability of microglia to react to harmful amyloid-β. It seems that diabetes can lead to the formation of neuritic plaques, which are characteristic pathological changes in the AD brain," Senior Researcher Teemu Natunen from the Institute of Biomedicine at the University of Eastern Finland says.

Western diet did not associate with the overall accumulation of amyloid-β in the brain of AD mice.

"A diet that is rich in fat and sugar, i.e. the typical Western diet, is known to increase the risk of type 2 diabetes, and this way, it possibly also contributes to the development of AD," Professor Heikki Tanila from the A. I. Virtanen Institute for Molecular Sciences at the University of Eastern Finland says.

The researchers further analysed cortical biopsies of idiopathic normal pressure hydrocephalus patients, collected and studied by Professor Ville Leinonen's research group at Kuopio University Hospital. Human cortical samples showed changes that were similar to those observed in mice: in normal pressure hydrocephalus patients with type 2 diabetes, the number of microglia around amyloid plaques was lower than in non-diabetic patients.

"The set of data from patients with normal pressure hydrocephalus constituted an important part of our study, because it allowed us to show that also humans with type 2 diabetes have an impaired microglia response. This type of collaboration between research groups at the University of Eastern Finland and Kuopio University Hospital, which makes it possible for us to verify findings from basic research in patient samples, is crucial for the high-level research carried out in the Neuroscience Research Community at UEF," Professor Mikko Hiltunen from the Institute of Biomedicine at the University of Eastern Finland says.
The study was funded by the Academy of Finland, the JPND EU Cofund programme, and Sigrid Jusélius Foundation. The study was published in Molecular Neurodegeneration.

For further information, please contact:

Senior Researcher Teemu Natunen, tel. +358 50 3871272, teemu.natunen (at) uef.fi, Institute of Biomedicine, University of Eastern Finland, Kuopio

Professor Heikki Tanila, tel. +358 40 3552084, heikki.tanila (at) uef.fi, A.I, Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio

Professor Ville Leinonen, tel. +358 44-717 2303, ville.leinonen (at) uef.fi, Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Kuopio University Hospital

Professor Mikko Hiltunen, tel. +358 40 3552014, mikko.hiltunen (at) uef.fi, Institute of Biomedicine, University of Eastern Finland, Kuopio

Research article:

Natunen T*, Martiskainen H*, Marttinen M*, Gabbouj S, Koivisto H, Kemppainen S, Kaipainen S, Takalo M, Svobodová H, Leppänen L, Kemiläinen B, Ryhänen S, Kuulasmaa T, Rahunen E, Juutinen S, Mäkinen P, Miettinen P, Rauramaa T, Pihlajamäki J, Haapasalo A, Leinonen V, Tanila H*, Hiltunen M*. Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Molecular Neurodegeneration 2020;15(1):66. DOI: 10.1186/s13024-020-00415-2

University of Eastern Finland

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.