Volcanic eruptions have more effect in summer

November 18, 2020

Detailed modeling of the effect of volcanic eruptions on the El Niño Southern Oscillation (ENSO) has shown that the climate response to these events depends on the timing of the eruption and the preceding conditions. The research, led by KAUST researchers Evgeniya Predybaylo and Georgiy Stenchikov, settles a long-standing debate about the role of volcanic eruptions in global climate perturbations.

"The ENSO is a feature of the tropical Pacific Ocean climate, with patterns of temperature, precipitation and wind that oscillate between warmer El Niño and cooler La Niña phases every two to seven years," explains Predybaylo. "Due to the vast size of the tropical Pacific, the ENSO controls the climate in many other parts of the globe and is responsible for droughts, floods, hurricanes, heat waves and other severe weather events. To evaluate these risks, it is essential to have proper projections and predictions of future ENSO behavior."

Climate modeling indicates that the ENSO is very sensitive to external perturbations, such as increased carbon dioxide in the atmosphere or volcanic eruptions. Even though major volcanic eruptions, like the Mount Pinatubo eruption in 1991, are known to have caused widespread cooling due to the reflection of solar radiation, such effects have been difficult to prove by modeling.

"There was previously no modeling consensus on how the Pacific Ocean responds to such climatologically large volcanic eruptions, with climate models predicting diverse and often contradictory responses," says Sergey Osipov from the research team.

Because the tropical Pacific climate is itself highly variable, the modeling needs to be performed carefully to separate the eruption-driven ocean response from random variations. This requires a large number of climate simulations using a model that can simulate both the radiative impact of volcanic eruptions and a realistic ENSO cycle. To achieve this, the team collaborated with Andrew Wittenberg from Princeton University, US, to run the CM2.1 climate model using KAUST's supercomputer.

"After running more than 6,000 climate simulations covering nearly 20,000 model years and analyzing the data," says Predybaylo, "we found that the ENSO response to stratospheric volcanic eruptions strongly depends on the seasonal timing of the eruption and the state of the atmosphere and ocean in the Pacific at the time."

In particular, the research showed that even very large eruptions seem to have little discernible effect on the ENSO in winter or spring, while summer eruptions almost always produce a strong climate response.

"The principles and techniques developed in our study could also be applied to various types of observational data and multimodel studies of future climate change, including the effects of global warming," says Predybaylo.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Volcanic Eruptions Articles from Brightsurf:

New drone technology improves ability to forecast volcanic eruptions
Specially-adapted drones developed by a UCL-led international team have been gathering data from never-before-explored volcanoes that will enable local communities to better forecast future eruptions.

Volcanic eruptions may explain Denmark's giant mystery crystals
Researchers have long been stumped for an explanation of how tens of millions of years-old giant crystals known as glendonites came to be on the Danish islands of Fur and Mors.

The testimony of trees: How volcanic eruptions shaped 2000 years of world history
Researchers have shown that over the past two thousand years, volcanoes have played a larger role in natural temperature variability than previously thought, and their climatic effects may have contributed to past societal and economic change.

Indian monsoon can be predicted better after volcanic eruptions
Large volcanic eruptions can help to forecast the monsoon over India - the seasonal rainfall that is key for the country's agriculture and thus for feeding one billion people.

Volcanic eruptions reduce global rainfall
POSTECH Professor Seung-Ki Min's joint research team identifies the mechanism behind the reduction in precipitation after volcanic eruptions.

A new tool to predict volcanic eruptions
Earth's atmosphere is made up of 78% nitrogen and 21% oxygen, a mixture that is unique in the solar system.

Oral traditions and volcanic eruptions in Australia
In Australia, the onset of human occupation (about 65,000 years?) and dispersion across the continent are the subjects of intense debate and are critical to understanding global human migration routes.

'Crystal clocks' used to time magma storage before volcanic eruptions
The molten rock that feeds volcanoes can be stored in the Earth's crust for as long as a thousand years, a result which may help with volcanic hazard management and better forecasting of when eruptions might occur.

Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.

Rare volcanic rocks lift lid on dangers of little-studied eruptions
Unusual rocks discovered on a remote mountainside have alerted scientists to the dangers posed by a little-studied type of volcano.

Read More: Volcanic Eruptions News and Volcanic Eruptions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.