3D bioprinted heart provides new tool for surgeons

November 18, 2020

Professor of Biomedical Engineering Adam Feinberg and his team have created the first full-size 3D bioprinted human heart model using their Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technique. Showcased in a recent video by American Chemical Society and created from MRI data using a specially built 3D printer, the model mimics the elasticity of cardiac tissue and sutures realistically. This milestone represents the culmination of two years of research, holding both immediate promise for surgeons and clinicians, as well as long term implications for the future of bioengineered organ research.

The FRESH technique of 3D bioprinting was invented in Feinberg's lab to fill an unfilled demand for 3D printed soft polymers, which lack the rigidity to stand unsupported as in a normal print. FRESH 3D printing uses a needle to inject bioink into a bath of soft hydrogel, which supports the object as it prints. Once finished, a simple application of heat causes the hydrogel to melt away, leaving only the 3D bioprinted object.

While Feinberg's lab has proven both the versatility and the fidelity of the FRESH technique, the major obstacle to achieving this milestone was printing a human heart at full scale. This necessitated the building of a new 3D printer custom made to hold a gel support bath large enough to print at the desired size, as well as minor software changes to maintain the speed and fidelity of the print.

Major hospitals often have facilities for 3D printing models of a patient's body to help surgeons educate patients and plan for the actual procedure, however these tissues and organs can only be modeled in hard plastic or rubber. Feinberg's team's heart is made from a soft natural polymer called alginate, giving it properties similar to real cardiac tissue. For surgeons, this enables the creation of models that can cut, suture, and be manipulated in ways similar to a real heart. Feinberg's immediate goal is to begin working with surgeons and clinicians to fine tune their technique and ensure it's ready for the hospital setting.

"We can now build a model that not only allows for visual planning, but allows for physical practice," says Feinberg. "The surgeon can manipulate it and have it actually respond like real tissue, so that when they get into the operating site they've got an additional layer of realistic practice in that setting."

This paper represents another important marker on the long path to bioengineering a functional human organ. Soft, biocompatible scaffolds like that created by Feinberg's group may one day provide the structure onto which cells adhere and form an organ system, placing biomedicine one step closer to the ability to repair or replace full human organs.

"While major hurdles still exist in bioprinting a full-sized functional human heart, we are proud to help establish its foundational groundwork using the FRESH platform while showing immediate applications for realistic surgical simulation," added Eman Mirdamadi, lead author on the publication.

Published in ACS Biomaterials Science and Engineering, the paper was co-authored by Feinberg's students Joshua W. Tashman, Daniel J. Shiwarski, Rachelle N. Palchesko, and former student Eman Mirdamadi.
-end-


College of Engineering, Carnegie Mellon University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.