Surprises in 'active' aging

November 18, 2020

Aging is a process that affects not only living beings. Many materials, like plastics and glasses, also age - ie they change slowly over time as their particles try to pack better - and there are already computer models to describe this. Biological materials, such as living tissue, can show similar behaviour to glasses except that the particles are actual cells or bacteria which have their own propulsion. Researchers at the University of Göttingen have now used computer simulations to explore the aging behaviour of these "living" glassy systems. There was a surprise in that the activity of the particles can actually drive aging, which has potential consequences for a number of applications. Their research was published in Physical Review Letters.

In materials like glasses and plastics, their particles pack together better over time (ie they age). But if this process is disturbed by mechanical deformation, for instance if a solid is bent, then the materials go back to their earlier state and are thus 'rejuvenated'. To model what happens in biological systems, physicists at the University of Göttingen developed extensive computer simulations of a model of a glass made up of active particles (a living glass). Just as it would in a real biological system, each particle in the simulation has its own propulsion force; this is modelled as changing direction randomly over time. Then the researchers varied the timescale of these changes in direction. When this timescale is short, particles are propelled randomly as if they were at a higher temperature, and this is known to produce aging. But when direction changes are slow, particles try to keep going in the same direction and this should act like local deformation, thus stopping aging. However, the simulations here showed something interesting and unexpected: when the activity of the particles is very persistent, it actually drives aging in living glassy systems.

"We were really surprised when we saw that persistent active propulsion can cause aging. We had expected it to work like small-scale deformation in the material that would rejuvenate it," comments Dr Rituparno Mandal from the Institute for Theoretical Physics at the University of Göttingen. He goes onto say, "But in fact, the local deformation is so slow that the particles can effectively go with the flow and use their motion to find lower energy arrangements. In effect, they pack better."

Senior author, Professor Peter Sollich, also from the University of Göttingen, added "The research highlights important features of glassy behaviour in active materials that have no comparable behaviour in conventional glasses. This might have implications for many biological processes where glass-like effects have been identified, including cell behaviour in wound-healing, tissue development and cancer metastasis."
-end-
Original publication: Mandal R and Sollich P, "Multiple types of aging in active glasses", Physical Review Letters DOI: 10.1103/PhysRevLett.125.218001

URL: https://link.aps.org/doi/10.1103/PhysRevLett.125.218001

Contact

Dr Rituparno Mandal
University of Göttingen
Institute of Theoretical Physics
Friedrich Hund Platz 1, 37077 Göttingen, Germany
Email: rituparno.mandal@theorie.physik.uni-goettingen.de
Tel: +49 (0)551 39 26958

Contact

Professor Peter Sollich
University of Göttingen
Institute of Theoretical Physics
Friedrich Hund Platz 1, 37077 Göttingen, Germany
Email: peter.sollich@theorie.physik.uni-goettingen.de
http://www.uni-goettingen.de/en/583011.html

University of Göttingen

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.