Scientist Finds Asteroid Fossil That May Have Caused Global Dinosaur Extinction

November 18, 1998

The fossilized remnants of an asteroid that may have caused the global extinction of dinosaurs and other species more than 65 million years ago has been found by a National Science Foundation (NSF)-funded researcher.

Frank Kyte, a geochemist from University of California at Los Angeles (UCLA), presents his analysis of the fossil meteorite in the November 19 issue of the journal Nature.

Some scientists believe that this particular worldwide extinction, which ended the Cretaceous period 65 million years ago, was caused by the destructive impact of a comet or asteroid. Kyte found the fossil meteorite while studying the sediment boundary layer between the Cretaceous and Tertiary eras.

Hidden in mud and buried beneath the Pacific Ocean for 65 million years, the fossil is no longer composed of all of its original minerals, yet has retained its original shape and texture.

"The fossil is a record of the original rock," said Richard Lane, program manager in NSF's earth sciences division, which funds Kyte's research, "much like fossilized traces of dinosaur skin, or, more appropriately, like casts made from the victims of Mt. Vesuvius at Pompeii whose imprints were preserved in the volcanic ash."

According to Kyte, it is likely that the fossil depicts the remains of a colossal asteroid, some six miles wide, which collided with the earth near Mexico's Yucatan peninsula. His findings suggest that the original meteorite had a rocky composition that corresponds with the makeup of asteroids, as opposed to the porous materials that would more likely be found in a comet.

Although the fossil itself is only a tenth of an inch long, Kyte was able to deduce its origins using instruments from UCLA's electron microprobe and neutron activation laboratories. These instruments, which can identify the chemical components of a given substance, found the fossil to be high in iridium, an element found in relative abundance in asteroid meteorites.

In our solar system, asteroids are found orbiting the sun in a belt between Mars and Jupiter. This rocky belt of space debris is thought to be a leftover from the time when the planets first formed.

Kyte notes that this particular asteroid moved out of the belt towards Earth at about 40,000 miles per hour. The resulting impact is thought to have had devastating consequences for the world's climate and could have led to the extinction of the dinosaurs and many other forms of life.

"Studies like Kyte's show that celestial impacts have had a profound effect on the history of the earth," said Lane. "One begins to think that such catastrophic events played at least as important a role in shaping the earth as did more gradual processes."
Media contact:
Greg Lester

Program contact:
Richard Lane

National Science Foundation

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to