Flower chemicals attract some insects but deter others with toxic warning

November 19, 2001

ITHACA, N.Y. -- When some insects zero in on a flower for nectar, their ultraviolet vision is guided by a bull's-eye "painted" on the plant by chemical compounds. Now, chemical ecologists at Cornell University have discovered a second job for these compounds: warding off herbivores.

Even before a flower bud -- such as the creeping St. John's wort -- opens for business, the same chemicals, called DIPs (for dearomatized isoprenylated phloroglucinols), are both coloring the flower in patterns unrecognizable to the human eye and protecting the plant's reproductive apparatus by killing or deterring caterpillars, the scientists report in the upcoming Proceedings of the National Academy of Sciences (Vol. 98, No. 24).

"Now that we know where to look, anti-feedant chemicals like the DIPs undoubtedly will be found in other plant species, and they offer clues to more natural insect control agents," says Thomas Eisner, Cornell's Schurman Professor of Chemical Ecology and one of six authors of the report. An anti-feedant chemical discourages herbivorous insects and can harm those that don't get the message.

One place DIPs are found is in hops, the female flowers of the commercial hop, which give beer its bitter flavor and also protect against pathogenic microorganisms, Eisner says. "If your beer is safe and enjoyable to drink, you ought to thank a flower."

Also participating in the Cornell study, which was supported by grants from the National Institutes of Health, were Jerrold Meinwald, the Goldwin Smith Professor of Chemistry; Athula Attygalle, director of the Mass Spectrometry Facility in the Department of Chemistry and Chemical Biology; Mathew Gronquist, graduate student in that department; Alexander Bezzerides, graduate student in the Department of Neurobiology and Behavior; and Maria Eisner, senior research associate in that department, who is Thomas Eisner's wife and research partner. The DIP finding follows 30-year-old studies by the Eisners of floral "nectar guide" patterns that only creatures with vision in the ultraviolet part of the spectrum can see. Using combinations of special camera lenses and filters, photographic films and video imaging, the Eisners revealed a bug's-eye world where flowers display patterns that are visible only to insects. Besides making a target on the part of the flower where nectar and pollen occur, the distinctive patterns also are believed to help insects recognize a familiar flower among a field of competing images.

"But we had a nagging suspicion that the ultraviolet-absorbing pigments had other functions for the plant," recalls graduate student Bezzerides, who subsequently helped to demonstrate toxicity and a deterrent effect of the chemicals. "We wondered if the chemicals originally served the plants as a sunscreen against ultraviolet radiation."

So the Cornell biologists and chemical biologists joined forces to see what would make a caterpillar sick. Adding to their suspicion that DIPs and similar compounds might have an anti-feedant function was the finding that the compounds were particularly prevalent in plant ovary walls -- making up as much as one fifth by dry weight -- as well as in other reproductive structures such as the anthers. "Just as important as attracting pollinators to a plant is producing viable seed, so there is an evolutionary incentive to protect the reproductive apparatus from herbivores," says graduate student Gronquist, who characterized the chemicals

The flowering plant chosen for the study was Hypericum calycinum, a native of southeastern Europe that is popular with gardeners worldwide as an ornamental. When H. calycinum flowers are fully open, they appear to humans as a uniform yellow disk. But to insects with ultraviolet-sensitive eyes, the disk is highlighted by a dark, ultraviolet-absorbing center, giving the flower a bull's-eye.

While Gronquist performed analyses that led to isolation of the chemical compound, the biologists devised feeding studies. They offered to larvae of the Utheisa ornatrix moth (also called the rattlebox moth) filter-paper discs soaked with chemicals from plants the insects normally relish.

Then the caterpillars were offered paper disks also soaked with DIP chemicals. The ultraviolet-absorbing chemicals deterred most of the caterpillars. But the DIPs were lethal to those that sampled the chemical-laced paper.

The experiments showed, according to the Cornell chemical ecologists, that DIPs both contribute to the ultraviolet pattern in flowers and serve as an anti-feedant, with potentially lethal consequences. Says Eisner, "With the same chemical, the plant is saying to pollinating insects that it needs to attract, 'this bud's for you,' and to herbivores that pose a threat, 'bug off.' "

And speaking of beer, Cornell chemistry professor Meinwald notes that similar chemicals from hops, which have been used in brewing for centuries, are not in the form or quantity to harm human drinkers -- or even to deter fans of the bitter beverage. "What we use to flavor and to

preserve beer is also used by plants both to entice the pollinators and to deter the enemy," according to Meinwald. "Nature quite often has a way of using the same chemical idea to solve diverse problems." Related World Wide Web sites: The following sites provide additional information on this news release. Some might not be part of the Cornell University community, and Cornell has no control over their content or availability. o Proceedings of the National Academy of Sciences: http://www.pnas.org/current.shtml

o Cornell Dept. of Chemistry and Chemical Biology: http://www.chem.cornell.edu/

o Cornell Dept. of Neurobiology and Behavior: http://www.nbb.cornell.edu/neurobio/sofneurobio.html

o CIRCE (Cornell Institute for Research in Chemical Ecology):http://www.cfe.cornell.edu/circe/aboutcirce.html

Cornell University

Related Beer Articles from Brightsurf:

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

Consumers can distinguish between bitter tastes in beer -- doesn't alter liking
Although most beer consumers can distinguish between different bitter tastes in beer, this does not appear to influence which beer they like.

Beer was here! A new microstructural marker for malting in the archaeological record
A new method for reliably identifying the presence of beer or other malted foodstuffs in archaeological finds is described in a study published May 6, 2020 in the open-access journal PLOS ONE by Andreas G.

Brewing beer that tastes fresh longer
Unlike wine, which generally improves with time, beer does not age well.

Money spent on beer ads linked to underage drinking
Advertising budgets and strategies used by beer companies appear to influence underage drinking, according to new research.

Why you love coffee and beer
Why do you swig bitter, dark roast coffee while your coworker guzzles sweet cola?

Beer and fodder crop has been deteriorating for 6,000 years
The diversity of the crop sorghum, a cereal used to make alcoholic drinks, has been decreasing over time due to agricultural practice.

Keeping heavy metals out of beer and wine
A frosty mug of beer or ruby-red glass of wine just wouldn't be the same if the liquid was murky or gritty.

Investigating cell stress for better health -- and better beer
Human beings are not the only ones who suffer from stress -- even microorganisms can be affected.

Store craft beer in a cool place and consume it as fresh as possible
A new study by the Leibniz-Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM) shows that craft beer should be kept cool and consumed as fresh as possible.

Read More: Beer News and Beer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.