High HIV levels shut down anti-HIV immune responses

November 19, 2001

New research suggests that HIV-specific T cells persist in infected individuals, but high virus levels can diminish the ability of those cells to respond to infection. The report sheds new light on how HIV evades the immune system and establishes long-term infections. The research appears in the November 20, 2001 issue of the Proceedings of the National Academy of Sciences.

"HIV infection not only destroys the body's resistance to other pathogens, but it can manipulate the immune system for its own survival," says Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID). "This research provides some important clues to how the virus accomplishes that goal."

In chronic viral infections, CD4+ T cells are required for the immune system to keep virus levels in check. In HIV-infected people, however, few anti-HIV CD4+ T cells proliferate when exposed to viral proteins. Researchers have not known if the absence of a proliferative T-cell response occurs because the virus destroys or merely inactivates HIV-specific CD4+ T cells.

NIAID's Andrew McNeil, M.D., and Mark Connors, M.D., led a study to answer that question. The investigators studied the T cells of three groups of patients: those with progressive HIV infection; a rare subset of individuals with long-term, untreated infection but with viral RNA levels consistently below the level of detection (long-term nonprogressors); and patients on antiretroviral therapy who stopped taking their drugs long enough for virus levels to rebound.

All three groups had equal numbers of HIV-specific CD4+ T cells, indicating the cells were not destroyed by the virus. The HIV-specific CD4+ T cells of people with progressive disease, however, did not respond to the virus by proliferating, suggesting they had somehow been turned off.

To examine the cause and effect relationship between proliferative T-cell responses and immune control over the virus, Drs. McNeil, Connors, and their colleagues turned to the patients who showed anti-HIV T-cell proliferation while taking antiretroviral drugs. The investigators reasoned that if those T cells were keeping HIV levels low, they should continue to do so even if therapy were interrupted. When the researchers stopped the drugs, however, virus levels rebounded in each of the patients. In those individuals, anti-HIV CD4+ T cells were present but lost their ability to proliferate as virus levels increased. Furthermore, the cells maintained their inactive state until antiretroviral drugs brought virus levels back under control.

The results suggest that the loss of HIV-specific T-cell proliferation may not be a cause, but rather is an effect, of high virus levels. Such proliferation, which is present in long-term nonprogressors, therefore does not necessarily predict immune control over the virus.

"This presents a good news/bad news scenario," says Dr. Connors. "The good news is that HIV-specific CD4+ T cells are not completely deleted; the bad news is that measuring the activity or even the frequency of those cells is not necessarily a good predictor of long-term virus control."

The results suggest that long-term interruptions in antiretroviral therapy may not be the best way to stimulate anti-HIV immune responses. The results also provide some clues to how HIV disrupts the immune response to itself and responses to other pathogens.
-end-
NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

Reference:

AC McNeil et al. High-level HIV-1 viremia suppresses viral antigen-specific CD4+ T cell proliferation. Proceedings of the National Academy of Sciences 98:13878-83 (2001). 10.1073/pnas.251539598

Copies of the article are now available to reporters from the PNAS news office, tel. 202-334-2138, or e-mail pnasnews@nas.edu. Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.govContact: Sam Perdue
301-402-1663
sp189u@nih.gov

NIH/National Institute of Allergy and Infectious Diseases

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.