Biofilm antibiotic resistance may be susceptible to genetic approach

November 19, 2003

HANOVER, NH--Biofilms, slimy clusters of bacteria that are resistant to antibiotics, may have a genetic chink in their armor that could be exploited to combat the infections they cause. A study led by Dartmouth Medical School (DMS) researchers used a genetic-based approach to begin to understand how biofilms can withstand antibacterial treatments.

The results of the study, published in the November 20 issue of Nature, provide an innovative model for the investigation of biofilms that may lead to the development of new methods to hamper their resilience. "We are beginning to get at some of the mechanisms that might be important to understanding the antibiotic resistance of biofilms, which is the first step in the long journey to developing a treatment, " said lead author Dr. George O'Toole, assistant professor of microbiology and immunology at DMS.

Biofilms are complex communities of bacterial cells that can survive various environmental stresses including the presence of antibiotics. These populations can form on industrial equipment, medical implants, teeth (plaque) and internal organs, and are estimated to be involved in 65 percent of human bacterial infections, according to the Centers for Disease Control and Prevention. Biofilms are of interest to those who study periodontal disease, pneumonias associated with cystic fibrosis, and the "earache" infections of the middle ear.

Conventional antibiotic therapy, usually effective against free-floating bacteria, is frequently ineffective once pathogens have formed biofilms: these surface-attached communities are up to 1,000-times more resistant to antibiotics.

The Dartmouth-led study questions prior assumptions that the structure itself confers resilience--and points to the possibility that one day, clinicians may be able to program the bacteria to be less resistant to antibiotics. "This is the first time anyone has used an unbiased genetic approach to understand why biofilms are resistant to antibiotics," said principal author Thien-Fah Mah, a postdoctoral fellow at DMS.

"One of the most vexing problems in biofilms is that when microbes band together in a biofilm they are remarkably protected from killing by antibiotics, biocides and disinfectants," said study co-author Phil Stewart, deputy director of the Center for Biofilm Engineering at Montana State University-Bozeman. "And of course we'd like an explanation for that."

Using a common pathogen, Pseudomonas aeruginosa, the researchers developed a genetic screen to look for mutant strains that were more sensitive to antibiotics. "The idea was to let the bacteria tell us which genes were important," said Dr. Mah. "Using this approach, we were able to identify a mutant of P. aeruginosa that, while still capable of forming biofilms, did not develop the high-level biofilm-resistance to three classes of antibiotics."

One antibiotic with increased success against the mutant biofilms described in this study is tobramycin, commonly used to treat patients with cystic fibrosis (CF), a disease where biofilms are thought to develop in patients' lungs. "This is a proof of concept that there may be a possibility of identifying small molecules to attack biofilm resistance, thereby rendering these microbial communities more susceptible to treatment with conventional antibiotic therapy," said Dr. O'Toole.
-end-
The research was funded in part by the National Science Foundation (NSF), NIH, the Canadian Cystic Fibrosis Foundation, Microbia, Inc. and the Pew Charitable Trusts.

The Geisel School of Medicine at Dartmouth

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.