How do we make sense of what we see?

November 19, 2007

M.C. Escher's ambiguous drawings transfix us: Are those black birds flying against a white sky or white birds soaring out of a black sky? Which side is up on those crazy staircases?

Lines in Escher's drawings can seem to be part of either of two different shapes. How does our brain decide which of those shapes to "see?" In a situation where the visual information provided is ambiguous -- whether we are looking at Escher's art or looking at, say, a forest -- how do our brains settle on just one interpretation?

In a study published this month in Nature Neuroscience, researchers at The Johns Hopkins University demonstrate that brains do so by way of a mechanism in a region of the visual cortex called V2.

That mechanism, the researchers say, identifies "figure" and "background" regions of an image, provides a structure for paying attention to only one of those two regions at a time and assigns shapes to the collections of foreground "figure" lines that we see.

"What we found is that V2 generates a foreground-background map for each image registered by the eyes," said Rudiger von der Heydt, a neuroscientist, professor in the university's Zanvyl Krieger Mind/Brain Institute and lead author on the paper. "Contours are assigned to the foreground regions, and V2 does this automatically within a tenth of a second."

The study was based on recordings of the activity of nerve cells in the V2 region in the brain of macaques, whose visual systems are much like that of humans. V2 is roughly the size of a microcassette and is located in the very back of the brain. Von der Heydt said the foreground-background "map" generated by V2 also provides the structure for conscious perception in humans.

"Because of their complexity, images of natural scenes generally have many possible interpretations, not just two, like in Escher's drawings," he said. "In most cases, they contain a variety of cues that could be used to identify fore- and background, but oftentimes, these cues contradict each other. The V2 mechanism combines these cues efficiently and provides us immediately with a rough sketch of the scene."

Von der Heydt called the mechanism "primitive" but generally reliable. It can also, he said, be overridden by decision of the conscious mind.

"Our experiments show that the brain can also command the V2 mechanism to interpret the image in another way," he said. "This explains why, in Escher's drawings, we can switch deliberately" to see either the white birds or the dark birds, or to see either side of the staircase as facing "up."

The mechanism revealed by this study is part of a system that enables us to search for objects in cluttered scenes, so we can attend to the object of our choice and even reach out and grasp it.

"We can do all of this without effort, thanks to a neural machine that generates visual object representations in the brain," von der Heydt said. "Better yet, we can access these representations in the way we need for each specific task. Unfortunately, how this 'machine' works is still a mystery to us. But discovering this mechanism that so efficiently links our attention to figure-ground organization is a step toward understanding this amazing machine."

Understanding how this brain function works is more than just interesting: It also could assist researchers in unraveling the causes of - and perhaps identifying treatment for - visual disorders such as dyslexia.
Other authors include Fangtu T. Qiu and Tadashi Sugihara, both of the Zanvyl Krieger Mind-Brain Institute. Funding for the research was provided by the National Institutes of Health.

Note: An online version of this release includes the Escher drawings referred to in the lead. See

Related Web sites:

PDF copies of the Nature Neuroscience article are available. Contact Lisa De Nike at or 443-287-9906. Also available are digital images of von der Hedyt.

Johns Hopkins University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to