Biomedical research profits from the exploration of the deep sea

November 19, 2008

A study published in the scientific journal PLoS ONE highlights how the exploration of the ocean depths can benefit humankind. This is the story of a voyage of discovery, starting with marine animals that glow, the identification of the molecules responsible and their application as marker in living cells.

Many marine organisms such as sea anemones and corals produce fluorescent proteins, which come in a variety of dazzling hues. Fluorescent proteins have revolutionized biomedical research by enabling the imaging of processes within living cells and tissues. The impact of this technology is considered so high that the 2008 Nobel Prize in Chemistry was most recently awarded to scientists that discovered and further developed the first green fluorescent protein that was applied as cellular marker.

Many useful fluorescent proteins have been found in species that live in the sun-drenched tropical coral reefs. But much less is known about species living in the darkness of the deep sea.

An international team of scientists led by Jörg Wiedenmann of the National Oceanography Centre, Southampton, Mikhail Matz of the University of Texas in Austin and Charles Mazel from the company NightSea have explored the Gulf of Mexico using a submarine, the US Johnson-Sea-Link II, equipped with a system designed to detect fluorescence.

They discovered a species of a sea anemone-like animal (a ceriantharian, or tube anemone) - possibly a new species -that emits bright green fluorescence. They went on to identify a novel green fluorescent protein.

Although isolated from an animal that lives in essentially complete darkness at depths between 500 and 600 metres and at low temperatures (below 10 °C), the new fluorescent protein, named cerFP505, can be well applied as marker protein in mammalian cells at normal body temperature (37 °C).

The brightness and stability of cerFP505 are similar to other fluorescent proteins used in biomedical research. The fluorescence can be switched on and off in a controlled way by alternating blue and near-ultra violet light. These properties make cerFP505 an ideal lead structure for the development of marker proteins for super-resolution microscopy, say the researchers.

Further useful properties can potentially be built into the fluorescent protein by genetic engineering. "Moreover", they say, "the discovery of photoswitchable cerFP505 from a deep sea animal reveals the lightless depths of the oceans as a new reservoir of proteins with novel and highly desirable properties for imaging applications".
-end-
The authors of the paper are Alexander Vogt, Cecilia D'Angelo, Franz Oswald, Andrew Denzel, Charles Mazel. Mikhail Matz, Sergey Ivanchenko, Ulrich Nienhaus and Jörg Wiedenmann. This study was supported by the Deutsche Forschungsgemeinschaft and the NOAA Ocean Exploration Program ('Operation Deep Scope).

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Related images are available from the NOCS Press Office.

Contact:
Rory Howlett
NOCS Press Office
Tel: +44 (0)23 8059 8490
Email: r.howlett@noc.soton.ac.uk

Dr Jörg Wiedenmann
Tel. +44 (0) 23 80593042
Email: J.Wiedenmann@soton.ac.uk

Citation: Vogt A, D'Angelo C, Oswald F, Denzel A, Mazel CH, et al. (2008) A Green Fluorescent Protein with Photoswitchable Emission from the Deep Sea. PLoS ONE 3(11): e3766. doi:10.1371/journal.pone.0003766

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.plos.org/10.1371/journal.pone.0003766




Disclaimer

This press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

PLOS

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.