ORNL, Los Alamos pioneer new approach to assist scientists, farmers

November 19, 2009

OAK RIDGE, Tenn., Nov. 19, 2009 -- Sustainable farming, initially adopted to preserve soil quality for future generations, may also play a role in maintaining a healthy climate, according to researchers at the Department of Energy's Oak Ridge and Los Alamos national laboratories.

ORNL and LANL scientists are exploring the large potential of the earth's soils to sequester carbon, with estimates claiming that new land-use practices could greatly reduce U.S. carbon emissions by as much as 25 percent. But exactly which practices are the most effective is still unclear, and a research paper published in the Soil Science Society of America Journal shines some light on this topic by introducing an easy-to-use field-portable approach to measure the carbon content of soils.

"This is a tool one could use to measure changes in soil carbon over time and try to establish whether soil carbon stocks are increasing or decreasing as a result of land-use practices," said lead author Madhavi Martin of ORNL's Environmental Sciences Division. "Although it is possible to measure these properties in the laboratory, the simplicity and portability of the device allow researchers exponentially greater flexibility to conduct their investigations."

The paper describes the adaptation of Laser Induced Breakdown Spectroscopy, or LIBS, a technique that once made Martin something of a celebrity when she used it confirm the common origin of two separate pieces of firewood - evidence that eventually led to a confession in a 2006 Texas murder case. LIBS works by measuring the light emitted when a small portion of the sample is annihilated with a laser pulse, a flash that provides an elemental fingerprint of virtually any substance under examination.

The challenge for the authors was configuring the experimental design to ensure accurate measurements of carbon regardless of soil characteristics. To accomplish this, the authors acquired a varied set of soil samples with different sand, silt and clay compositions from the Natural Resources Conservation Service and tested them against numerous laser wavelength and energies.

"We found that LIBS is a promising technique that provides a robust method for the sampling of soil carbon, relying solely on technology that can be taken to the field," Martin said. "Crop scientists, carbon managers and instrument developers should find these results encouraging."

With new techniques such as LIBS to assist them, researchers hope they can eventually identify the agricultural practices that provide the maximum benefits to farmers and the climate alike. Intensive farming is a double-edged sword as it can greatly enhance crop production in many areas of the country. Often, however, this comes at the expense of soil health in addition to accelerating the rate of climate change, according to the researchers.

Twice as much carbon is stored in the soils of the world as in the atmosphere, thanks to centuries of decomposition of plants and other organic matter. Fertile (high carbon content) soil is necessary for the growth of large healthy crops. However, fertile soil is also a favorite target of naturally occurring bacteria.

Fortunately for farmers and plants, the majority of carbon beneath our feet is physically protected from bacteria in what scientists call soil aggregates. A large portion of that carbon is concentrated near the earth's surface and therefore highly vulnerable to changes in land use. When a soil's aggregate structure is disturbed, such as through intensive farming, the organic matter it protects becomes accessible to soil microorganisms that use it as an energy source, releasing the stored carbon back into the atmosphere as the greenhouse gas CO2.

"Disruption of soil structure is estimated to contribute to a 50 percent loss of soil carbon," said Chuck Garten, a soil scientist at ORNL. "When the microstructure of the soil is disturbed, it breaks down the aggregates allowing large losses of soil carbon as a result of microbial decomposition."

This lesson was learned the hard way by many American farmers when pressure for production leads to serious soil degradation through erosion and nutrient losses. Intense farming by pioneer farmers in the first 30 years of settlement depleted the organic matter in the U.S. Great Plains by more than 50 percent with soil productivity falling more than 70 percent during the same period.

Eventually, better agricultural practices were adopted and production recovered. Still, grassland and forest soils continue to lose 20 percent to 50 percent of their original carbon content within the first 40 years of cultivation while tropical climates that practice shifting cultivation or slash and burn agriculture can lose their fertility within two to three years. Farmers make up for the loss by simply moving to new fields or replenishing carbon stocks with the use of manures and other organic wastes.
The research at Oak Ridge National Laboratory was funded by the Department of Energy's Office of Science, Biological and Environmental Research.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news.

Follow ORNL through Twitter, RSS, Photos and Video.

(Written by Brooke Van Dusen, who interned for the Environmental Sciences Division.)

DOE/Oak Ridge National Laboratory

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.