Holistic cell design leads to high-performance, long cycle-life Li/S battery

November 19, 2013

Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated in the laboratory a lithium-sulfur (Li/S) battery that has more than twice the specific energy of lithium-ion batteries, and that lasts for more than 1,500 cycles of charge-discharge with minimal decay of the battery's capacity. This is the longest cycle life reported so far for any lithium-sulfur battery.

Demand for high-performance batteries for electric and hybrid electric vehicles capable of matching the range and power of the combustion engine encourages scientists to develop new battery chemistries that could deliver more power and energy than lithium-ion batteries, currently the best performing battery chemistry in the marketplace.

For electric vehicles to have a 300-mile range, the battery should provide a cell-level specific energy of 350 to 400 Watt-hours/kilogram (Wh/kg). This would require almost double the specific energy (about 200 Wh/kg) of current lithium-ion batteries. The batteries would also need to have at least 1,000, and preferably 1,500 charge-discharge cycles without showing a noticeable power or energy storage capacity loss.

"Our cells may provide a substantial opportunity for the development of zero-emission vehicles with a driving range similar to that of gasoline vehicles," says Elton Cairns, of the Environmental Energy Technologies Division (EETD) at Berkeley Lab.

The battery initially showed an estimated cell-specific energy of more than 500 Wh/kg and it maintained it at >300 Wh/kg after 1,000 cycles--much higher than that of currently available lithium-ion cells.

The team is now seeking support for the continuing development of the Li/S cell, including higher sulfur utilization, operation under extreme conditions, and scale-up. Partnerships with industry are being sought. The next steps in the development are to further increase the cell energy density, improve cell performance under extreme conditions, and scale up to larger cells.

The results were reported in the journal Nano Letters, in a paper authored by Min-Kyu Song (Molecular Foundry, Berkeley Lab), Yuegang Zhang (Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences) and Cairns (Environmental Energy Technologies Division, Berkeley Lab). The research was funded by the U.S. Department of Energy's Office of Science and a University of California Proof of Concept Award.
For a more detailed discussion of the technology, see http://eetd.lbl.gov/news/article/57182/holistic-cell-design-by-berkele

The Molecular Foundry is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize, and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

DOE/Lawrence Berkeley National Laboratory

Related Batteries Articles from Brightsurf:

New research says Sodium-ion batteries are a valid alternative to Lithium-ion batteries
A team of scientists including WMG at the University of Warwick combined their knowledge and expertise to assess the current status of the Na-ion technology from materials to cell development, offering a realistic comparison of the key performance indicators for NBs and LIBs.

Fast calculation dials in better batteries
A simpler and more efficient way to predict the performance of batteries will lead to better batteries, according to Rice University engineers.

Building the batteries of cells
A new study, led by Dr. Ruchika Anand and Prof.

Researchers create a roadmap to better multivalent batteries
Lithium-ion batteries power everything from mobile phones to laptop computers and electric vehicles, but demand is growing for less expensive and more readily available alternatives.

New NiMH batteries perform better when made from recycled old NiMH batteries
A new method for recycling old batteries can provide better performing and cheaper rechargeable hydride batteries (NiMH) as shown in a new study by researchers at Stockholm University.

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.

Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.

New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.

Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.

Read More: Batteries News and Batteries Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.