New study determines more accurate method to date tropical glacier moraines

November 19, 2013

A Dartmouth-led team has found a more accurate method to determine the ages of boulders deposited by tropical glaciers, findings that will likely influence previous research of how climate change has impacted ice masses around the equator.

The study appears in the journal Quaternary Geochronology. A PDF of the study is available on request.

Scientists use a variety of dating methods to determine the ages of glacial moraines around the world, from the poles where glaciers are at sea level to the tropics where glaciers are high in the mountains. Moraines are sedimentary deposits that mark the past extents of glaciers. Since glaciers respond sensitively to climate, especially at high latitudes and high altitudes, the timing of glacial fluctuations marked by moraines can help scientists to better understand past climatic variations and how glaciers may respond to future changes.

In the tropics, glacial scientists commonly use beryllium-10 surface exposure dating. Beryllium-10 is an isotope of beryllium produced when cosmic rays strike bedrock that is exposed to air. Predictable rates of decay tell scientists how long ago the isotope was generated and suggest that the rock was covered in ice before then. Elevation, latitude and other factors affect the rate at which beryllium-10 is produced, but researchers typically use rates taken from calibration sites scattered around the globe rather than rates locally calibrated at the sites being studied.

The Dartmouth-led team looked at beryllium-10 concentrations in moraine boulders deposited by the Quelccaya Ice Cap, the largest ice mass in the tropics. Quelccaya, which sits 18,000 feet above sea level in the Peruvian Andes, has retreated significantly in recent decades. The researchers determined a new locally calibrated production rate that is at least 11 percent to 15 percent lower than the traditional global production rate.

"The use of our locally calibrated beryllium-10 production rate will change the surface exposure ages reported in previously published studies at low latitude, high altitude sites and may alter prior paleoclimate interpretations," said Assistant Professor Meredith Kelly, the study's lead author and a glacial geomorphologist at Dartmouth.

The new production rate yields beryllium-10 ages that are older than previously reported, which means the boulders were exposed for longer than previously estimated. Prior studies suggested glaciers in the Peruvian Andes advanced during early Holocene time 8,000 -10,000 years ago, a period thought to have been warm but perhaps wet in the Andes. But the new production rate pushes back the beryllium-10 ages to 11,000 -12,000 years ago when the tropics were cooler and drier. Also during this time, glaciers expanded in the northern hemisphere, which indicates a relationship between the climate mechanisms that caused cooling in the northern hemisphere and southern tropics.

The findings suggest the new production rate should be used to deliver more precise ages of moraines in low-latitude, high-altitude locations, particularly in the tropical Andes. Such precision can help scientists to more accurately reconstruct past glacial and climatic variations, Kelly said.
-end-
Professor Meredith Kelly is available to comment at Meredith.A.Kelly@dartmouth.edu

The research team included researchers from Dartmouth College, the University of Cincinnati, Pennsylvania State University, New Mexico Institute of Mining and Technology, Columbia University, Ecole Polytechnique Federale de Lausanne, University of Colorado and University of Arizona.

The research was supported by the Gary C. Comer Science and Education Foundation, Lamont Climate Center, and the National Science Foundation.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Dartmouth College

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.