Study to identify functions of hypothetical genes in 2 infectious disease pathogens

November 19, 2013

The National Institute of Allergy and Infectious Diseases (NIAID) has awarded the University of Chicago $4.4 million over five years to study genes of unknown function in bacteria that cause plague and brucellosis.

Sean Crosson, PhD, associate professor of biochemistry and molecular biophysics will lead the effort to characterize hypothetical genes--genes revealed via genome sequencing that as yet have no defined functional role--as part of a new Functional Genomics program at the NIAID. These studies will be carried out in collaboration with Olaf Schneewind, MD, PhD, professor and chair of the Department of Microbiology.

A total of 102 genes encoding proteins and small regulatory RNA sequences in the bacteria Yersiniapestis, which causes plague, and Brucella abortus, which causes brucellosis, a livestock disease that can be transmitted to humans, will be investigated. Targets were selected based on preliminary studies by the Crosson and Schneewind research groups that indicated potential roles for these genes in infection. This research program will be centered at the Howard Taylor Ricketts Laboratory, a level 3 biocontainment facility housed on the campus of Argonne National Laboratory that was constructed in partnership between the NIH and The University of Chicago.

"We have an opportunity to study genes that no one has ever studied," Crosson said. "Assigning function to hypothetical genes can inform studies of all species that contain similar genes."

The University of Chicago researchers are particularly interested in better understanding how these hypothetical genes are related to the infection process. Both Y. pestis and B. abortus are transmitted to humans through animals, and gaining insight into the biological mechanisms for infection could have implications for human health and even bioterrorism.

"This information is very valuable to the infectious disease research community. Right now, researchers that encounter these genes in their genetic screens or expression experiments don't know what to do with them," Crosson said.

Together with collaborators from Argonne National Lab, this research team will use cross-disciplinary bioinformatic, biochemical and genetic approaches, and animal infection models, including fleas, to define gene function. In addition, they will utilize structural biology resources such as the Advanced Photon Source at Argonne to study the biochemical functions of proteins encoded by hypothetical genes.

"This project leverages many of the strengths of The University of Chicago and Argonne. We're a group of experimental biologists, biophysicicts, chemists and bioinformaticians coming together to expand our knowledge of microbial gene function," Crosson said.
-end-
The grant, titled: "Defining the functions of uncharacterized genes in priority pathogens" (NIH project number: 1U19AI107792-01), is part of the Functional Genomics Program: Understanding the Functions of Uncharacterized Genes in Infectious Disease Pathogens at the National Institute of Allergy and Infectious Diseases.

More information can be found at:

http://www.niaid.nih.gov/labsandresources/resources/dmid/uncharacterizedgenes/Pages/default.aspx

and

http://projectreporter.nih.gov/project_info_description.cfm?aid=8581705&icde=18263735&ddparam=&ddvalue=&ddsub=&cr=4&csb=default&cs=ASC

University of Chicago Medical Center

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.