Natural compound mitigates effects of methamphetamine abuse, University of Missouri researchers find

November 19, 2013

COLUMBIA, Mo. - Studies have shown that resveratrol, a natural compound found in colored vegetables, fruits and especially grapes, may minimize the impact of Parkinson's disease, stroke and Alzheimer's disease in those who maintain healthy diets or who regularly take resveratrol supplements. Now, researchers at the University of Missouri have found that resveratrol may also block the effects of the highly addictive drug, methamphetamine.

Dennis Miller, associate professor in the Department of Psychological Sciences in the College of Arts & Science and an investigator with the Bond Life Sciences Center, and researchers in the Center for Translational Neuroscience at MU, study therapies for drug addiction and neurodegenerative disorders. Their research targets treatments for methamphetamine abuse and has focused on the role of the neurotransmitter dopamine in drug addiction. Dopamine levels in the brain surge after methamphetamine use; this increase is associated with the motivation to continue using the drug, despite its adverse consequences. However, with repeated methamphetamine use, dopamine neurons may degenerate causing neurological and behavioral impairments, similar to those observed in people with Parkinson's disease.

"Dopamine is critical to the development of methamphetamine addiction--the transition from using a drug because one likes or enjoys it to using the drug because one craves or compulsively uses it," Miller said. "Resveratrol has been shown to regulate these dopamine neurons and to be protective in Parkinson's disease, a disorder where dopamine neurons degenerate; therefore, we sought to determine if resveratrol could affect methamphetamine-induced changes in the brain."

Using procedures established by Parkinson's and Alzheimer's disease research, rats received resveratrol once a day for seven days in about the same concentration as a human would receive from a healthy diet. After a week of resveratrol, researchers measured how much dopamine was released by methamphetamine. Researchers found that resveratrol significantly diminished methamphetamine's ability to increase dopamine levels in the brain. Furthermore, resveratrol diminished methamphetamine's ability to increase activity in mice, a behavior that models the hyperactivity observed in people that use the stimulant.

"People are encouraged by physicians and dieticians to include resveratrol-containing products in their diet and protection against methamphetamine's harmful effects may be an added bonus," Miller said. "Additionally, there are no consistently effective treatments to help people who are dependent on methamphetamine. Our initial research suggests that resveratrol could be included in a treatment regimen for those addicted to methamphetamine and it has potential to decrease the craving and desire for the drug. Resveratrol is found in good, colorful foods, and has few side effects. We all ought to consume resveratrol for good brain health; our research suggests it may also prevent the changes in the brain that occur with the development of drug addiction."
-end-
The study "Repeated resveratrol treatment attenuates methamphetamine-induced hyperactivity and [3H]dopamine overflow in rodents," was published in Neuroscience Letters. Collaborators included Grace Y. Sun, professor of biochemistry, and Agnes Simonyi, associate research professor of biochemistry in the College of Agriculture, Food and Natural Resources, at the University of Missouri.

The Center for Translational Neuroscience is home to research teams who work together to translate neuroscience discoveries into clinical treatments for patients and highlights MU's interdisciplinary, highly collaborative culture in the area of One Health/One Medicine. Four key areas of collaborative strength that distinguish MU are collectively known as the Mizzou Advantage. The other three areas are Food for the Future, Sustainable Energy, and Media of the Future.

University of Missouri-Columbia

Related Dopamine Articles from Brightsurf:

Dopamine surge reveals how even for mice, 'there's no place like home'
''There's no place like home,'' has its roots deep in the brain.

New dopamine sensors could help unlock the mysteries of brain chemistry
In 2018, Tian Lab at UC Davis Health developed dLight1, a single fluorescent protein-based biosensor.

Highly sensitive dopamine detector uses 2D materials
A supersensitive dopamine detector can help in the early diagnosis of several disorders that result in too much or too little dopamine, according to a group led by Penn State and including Rensselaer Polytechnic Institute and universities in China and Japan.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Viewing dopamine receptors in their native habitat
A new study led by UT Southwestern researchers reveals the structure of the active form of one type of dopamine receptor, known as D2, embedded in a phospholipid membrane.

Significant differences exist among neurons expressing dopamine receptors
An international collaboration, which included the involvement of the research team from the Institut de Neurociències of the UAB (INC-UAB), has shown that neurons expressing dopamine D2 receptors have different molecular features and functions, depending on their anatomical localization within the striatum.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Novelty speeds up learning thanks to dopamine activation
Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning.

Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine
Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report Nov.

Chronic adversity dampens dopamine production
People exposed to a lifetime of psychosocial adversity may have an impaired ability to produce the dopamine levels needed for coping with acutely stressful situations.

Read More: Dopamine News and Dopamine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.