Alzheimer's disease: Molecular signals cause brain cells to switch into a hectic state

November 19, 2014

The research team also showed that the pathological changes of the astrocytes can be mitigated by pharmacological treatment. The triggering molecules turned out to be energy carriers of the cell such as ATP: These molecules can induce the astrocytes to switch into a hyperactive state, which is characterized by sudden fluctuations in the concentration of calcium. As the researchers describe in the scientific journal Nature Communications, their study suggests a novel potential approach for the treatment of Alzheimer's disease.

In a way, the brain resembles a large symphonic orchestra, whereby although the various instruments play together, each assumes a special part. Accordingly, the brain consists of nerve cells, also called "neurons", that are woven into a network in which they relay signals to one another. On the other hand, so-called glial cells are also equally important for brain function. These cells were once regarded as mere connective tissue of the brain. However, it is now known that they assume tasks that are far more complex than previously thought. One prominent member of this versatile family of glial cells are the astrocytes.

"Astrocytes have various functions in the brain. For example, they supply the neurons with nutrients, but they also dispose waste products of metabolism", explains Professor Gabor Petzold, who leads a research group at the Bonn site of the DZNE and also supervises the Neurovascular Unit at the University Hospital Bonn. „In addition, they influence the communication of neurons with one another, and are involved in the control of cerebral blood flow."

Alzheimer's disease alters the astrocytes

It has long been known that astrocytes change their shapes as a consequence of Alzheimer's. Cells located near the "plaques", as the protein deposits typical for this disease are called, grow in size and form additional extensions. However, until know it was largely unclear how these changes affect the function of astrocytes.

Thus, Petzold and his colleagues studied mice whose brains exhibited the typical protein deposits of Alzheimer's. They discovered that the calcium metabolism of astrocytes in the vicinity of plaques was disturbed. Calcium plays an important role as a regulator of cellular function and metabolism. "The astrocytes were hyperactive. This means that calcium levels in these cells could suddenly rise. We also noted that this effect often travelled to neighbouring astrocytes, causing so-called calcium waves. The effect is quite similar to throwing a stone into water," Petzold notes. "Normal astrocytes, in contrast, only rarely exhibit these variations in the concentration of calcium."

Energy carriers with a signal effect

These fluctuations were caused by the actions of a cellular molecule named ATP. When the researchers blocked its release with the help of drugs, the activity of the astrocytes normalized. The same effect was achieved when the scientists disabled a specific receptor for these molecules. As Petzold's team determined, this receptor was present in unusually high numbers on the surface of astrocytes in the vicinity of plaques. This circumstance made the cells particularly susceptive.

"ATP and similar molecules normally supply the cells with energy. However, it has already been known that they can also act as messenger molecules that can trigger specific reactions", Petzold explains. "Although these molecules occur in most cell tissues, it is assumed that their release is increased in the vicinity of the plaques. We could show that this causes the astrocytes to switch into hyperactivity. The signalling pathway is mediated by a special receptor on the cell surface of astrocytes."

An influence on blood flow

It is still uncertain whether the astrocytes' hyperactivity constitutes a protective defence reaction or whether it is associated with negative consequences. However, the current study shows that the calcium waves may in some cases be associated with local changes in brain perfusion. "This is interesting, because there have long been indications that Alzheimer's has a vascular component. Alterations of blood vessels and blood flow appear to play an important role", says Petzold.

According to the Bonn scientist the current study could open up new avenues for therapy: "Our investigations demonstrate that it is possible to mitigate the hyperactivity of these cells. This could point to a novel approach for treatment. It might perhaps also be possible to modify the course of the disease with the help of suitable pharmaceuticals."

So far, the scientist clarifies, the signalling pathways were studied at the level of the cellular network in the brain. In future studies, Petzold and his colleagues intend to investigate what effect the inhibition of hyperactivity has on disease symptoms.
Original publication

"Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer's disease mouse model", Andrea Delekate, Martina Füchtemeier, Toni Schumacher, Cordula Ulbrich, Marco Foddis, and Gabor C. Petzold, Nature Communications, 2014, doi: 10.1038/ncomms6422

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution of the Helmholtz Association of German Research Centres with sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten. The DZNE cooperates closely with universities, their clinics and other research facilities.

DZNE - German Center for Neurodegenerative Diseases

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to