New technology may speed up, build awareness of landslide risks

November 19, 2014

CORVALLIS, Ore. - Engineers have created a new way to use lidar technology to identify and classify landslides on a landscape scale, which may revolutionize the understanding of landslides in the U.S. and reveal them to be far more common and hazardous than often understood.

The new, non-subjective technology, created by researchers at Oregon State University and George Mason University, can analyze and classify the landslide risk in an area of 50 or more square miles in about 30 minutes - a task that previously might have taken an expert several weeks to months. It can also identify risks common to a broad area rather than just an individual site.

And with such speed and precision, it reveals that some landslide-prone areas of the Pacific Northwest are literally covered by landslides from one time or another in history. The system is based on new ways to use light detecting and ranging, or lidar technology, that can seemingly strip away vegetation and other obstructions to show land features in their bare form.

"With lidar we can see areas that are 50-80 percent covered by landslide deposits," said Michael Olsen, an expert in geomatics and the Eric HI and Janice Hoffman Faculty Scholar in the OSU College of Engineering. "It may turn out that there are 10-100 times more landslides in some places than we knew of before.

"We've always known landslides were a problem in the Pacific Northwest," Olsen said. "Many people are just now beginning to realize how big the problem is."

An outline of the new technology was recently published in Computers and Geosciences, a professional journal.

Oregon and Washington, especially in the Coast Range and Cascade Range, are already areas commonly known to have landslides, and as a result Oregon's Department of Geology and Mineral Industries has become a national leader in mapping of them, Olsen said. But previous approaches are slow, and the new technology, called a Contour Connection Method, could radically speed up widespread mapping, and build both professional and public awareness of the issue.

Despite the prevalence and frequency of landslides, they are not generally covered by most homeowner insurance policies; coverage can be purchased separately, but most people don't. And with increasing population growth, more and more people are moving into more remote locations, or building in scenic areas near the hills around cities where landslide risk might be high.

"A lot of people don't think in geologic terms, so if they see a hill that's been there for a long time, they assume there's no risk," said Ben Leshchinsky, a geotechnical engineer in the OSU College of Forestry. "And many times they don't want to pay extra to have an expert assess landslide risks or do something that might interfere with their land development plans."

Lidar is already a powerful tool, but the new system developed at OSU offers an automated way to improve the use of it, and could usher in a new era of landslide awareness, experts say. Information could be more routinely factored into road, bridge, land use, zoning, building and other decisions.

With this technology, a computer automatically looks for land features, such as suddenly steeper areas of soil, that might be evidence of a past landslide. It then searches the terrain for other features, such as a "toe" of soils at the base of the landslide. And in minutes it can make unbiased, science-based classifications of past landslides that consistently use the same criteria.

The technology was applied to the region surrounding the landslide of March, 2014, that killed 43 people near the small town of Oso, Washington. In about nine minutes it was able to analyze more than 2,200 acres and many prehistoric landslide features that are readily apparent in lidar images, in this region known for slope instability.

Eventually, adaptations of the technology might even allow for real-time monitoring of soil movement, the researchers said.
-end-
Editor's Note: Graphics are available to illustrate this story.

Landslide in Stillaguamish Valley, Washington: https://flic.kr/p/pQmpe3

Landslide inventory map: https://flic.kr/p/q7wexe

Oso landslide in Washington state: https://flic.kr/p/q5BgEs

Oregon State University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.