Nav: Home

Dogs know when they don't know

November 19, 2018

Researchers at the DogStudies lab at the Max Planck Institute for the Science of Human History have shown that dogs possess some "metacognitive" abilities - specifically, they are aware of when they do not have enough information to solve a problem and will actively seek more information, similarly to primates. To investigate this, the researchers created a test in which dogs had to find a reward - a toy or food - behind one of two fences. They found that the dogs looked for additional information significantly more often when they had not seen where the reward was hidden.

In the field of comparative psychology, researchers study animals in order to learn about the evolution of various traits and what this can tell us about ourselves. At the DogStudies lab at the Max Planck Institute for the Science of Human History, project leader Juliane Bräuer studies dogs to make these comparisons. In a recent study published in the journal Learning & Behavior, Bräuer and colleague Julia Belger, now of the Max Planck Institute for Human Cognitive and Brain Sciences, explore whether dogs have metacognitive abilities - sometimes described as the ability to "know what one knows" - and in particular whether they are aware of what information they have learned and whether they need more information.

To test this, the researchers designed an apparatus involving two V-shaped fences. A reward, either food or a toy, would be placed by one researcher behind one of the two fences while another researcher held the dog. In some cases, the dog could see where the reward was placed, while in others the dog could not. The researchers then analyzed how frequently the dogs looked through a gap in the fence before choosing an option. The question was whether, like chimps and humans, the dog would "check" through the gap when he or she had not seen where the reward was placed. This would indicate that the dog was aware that he or she did not know where the reward was - a metacognitive ability - and would try to get more information before choosing a fence.

Some researchers argue that some animals, such as dogs, may only look for extra information when searching as a routinized, instinctual behavior, and not as a result of a metacognitive process. To control for this, Bräuer and Belger tested whether dogs show the so-called "passport effect," originally described by researcher Joseph Call. When humans are looking for something very important, for example, a passport, they will engage in more active searching and will check for it more often than if they are looking for something less important or generic. Great apes display this same behavior - they will search more for a high-value food. Thus, Bräuer and Belger varied whether the dogs were looking for high- or low-value food, in order to test whether dogs also had the searching flexibility displayed in the passport effect. In another variation, they tested whether it made a difference to the dog when they had to search for a toy or for food.

The dogs "checked" more often when they did not know where the reward was hidden

The researchers found that the dogs did check significantly more often for the reward when they had not seen where it was placed. "These results show that dogs do tend to actively seek extra information when they have not seen where a reward is hidden," explains Belger. "The fact that dogs checked more when they had no knowledge of the reward's location could suggest that dogs show metacognitive abilities, as they meet one of the assumptions of knowing about knowing."

Checking, however, did not always make the dogs very much more successful. In the first variation, with food or a toy as a reward, when dogs checked they were correct more often than when they did not check. However, in the second variation, with high-value or low-value food as the reward, even when dogs checked, they were not correct more than one would expect based on chance. The researchers theorize that this could be due to inhibition problems - the dogs get so excited about finding the reward, that they cannot stop themselves from approaching the closest fence even when they have seen that the reward is probably not there.

Additionally, the dogs did check more often for the toy than for the food in the first variation, suggesting that they do show flexibility in their searching and are not just engaging in a routine behavior. However, they did not check more often for the high-value food in the second variation, although they did look for it more quickly. Overall, the researchers concluded that the dogs, while showing some degree of searching flexibility, are not as flexible as primates.

In a third variation of the test, the dogs could always see where a food reward was placed, but were subject to a delay of 5 seconds to 2 minutes before being allowed to retrieve the reward. Interestingly, the dogs did not check more often with a longer time delay, even though they were slightly less successful. "It's possible that this was due to a 'ceiling effect,' as dogs overall selected the correct fence in 93% of trials in this variation, so the pressure for seeking extra information was low," suggests Belger.

Do dogs have metacognitive abilities?

The results did not allow the researchers to say definitively whether dogs possess metacognition, although they displayed some evidence for it. "For humans, vision is an important information gathering sense. In this case our experiment was based on a 'checking' action relying on sight - but the dogs probably also used their sense of smell when checking through the gap. We know that smell is very important for dogs and we could see that they were using it," states Bräuer. "In future, we would like to develop an experiment investigating under what circumstances dogs decide to use their sense of smell versus sight. This may give us additional insights into their information seeking abilities."
-end-


Max Planck Institute for the Science of Human History

Related Behavior Articles:

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.
How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.
I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.
Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.
AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.
Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.
Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.
Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.
Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.
Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
More Behavior News and Behavior Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.