Glucose binding molecule could transform the treatment of diabetes

November 19, 2018

Scientists from the University of Bristol have designed a new synthetic glucose binding molecule platform that brings us one step closer to the development of the world's first glucose-responsive insulin which, say researchers, will transform the treatment of diabetes.

The World Health Organization estimate that over 382 million people worldwide, including 4.05 million people in the UK, have diabetes - a metabolic disorder affecting blood sugar levels. Everyone with Type 1 diabetes and some people with Type 2 diabetes need to take insulin, either by injection or a pump, to control their blood glucose levels.

The team from the University's School of Chemistry, led by Professor Anthony Davis, in conjunction with spin-out company Ziylo, have developed an innovative technology platform, which could be a key component to enable the next generation of insulin, able to react and adapt to glucose levels in the blood. This could eliminate the risk of hypoglycaemia - dangerously low blood sugar levels - leading to better metabolic control for people living with the disease.

Earlier this year Ziylo was bought by global healthcare company Novo Nordisk in a deal which was worth around $800 million - the biggest deal of its kind in the history of the University of Bristol.

Now, the science behind the research has been published in the journal Nature Chemistry.

Professor Davis, who has been at the forefront of research into synthetic sugar receptors for the last 20 years, said: "For many years we have been trying to design a molecule which binds glucose strongly and selectively in its natural environment (water).

"Until recently we had achieved some success, but never sufficient for practical applications. Now we have made a design change and finally solved the problem.

"Indeed, our new molecule performs better than anyone would have thought possible. It binds glucose 100 times more strongly than any of our previous efforts and is almost perfectly selective for its target. It is fully comparable with the natural molecules that bind glucose, despite being many times smaller."

There are good prospects for using the synthetic receptor to help diabetics.

Firstly, it could be the key to developing glucose-responsive insulin - insulin which becomes inactive when glucose is not present. This could free diabetics from the fear of hypoglycemia, where glucose levels sink to dangerously low levels.

Secondly it could be used in continuous glucose monitors, which would allow diabetics to know their glucose levels at all times.

Professor Davis added: "On a scientific level, we have shown that small synthetic molecule can match the performance of evolved natural molecules (proteins), even when the task is unusually difficult (the selective binding of glucose in water has always been thought to be exceptionally challenging).

"After so many years trying, it is fantastic that we have made something that could save so many lives."
-end-


University of Bristol

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.