'Druggable' cancer target found in pathway regulating organ size

November 19, 2018

It's known that cancer involves unchecked cell growth and that a biological pathway that regulates organ size, known at the Hippo pathway, is also involved in cancer. It's further known that a major player in this pathway, YAP, drives many types of tumors. Now, researchers at Boston Children's Hospital have solved an ongoing problem: how to turn this knowledge into a practical drug target. In a study published November 16 in Nature Communications, they show that YAP acts largely through another downstream player called NUAK2 that can readily be inactivated with a small molecule.

"The Hippo pathway, and especially YAP, has been hard to target with drugs," says senior study author Fernando Camargo, PhD, of Boston Children's Stem Cell Research program. "This is the first demonstration of a 'druggable' molecule that could be targeted in any type of tumor driven by YAP."

Although the study involved liver cancer, the findings could be relevant to many YAP-driven oral cancers, head and neck squamous carcinomas, pancreatic cancers, ovarian cancers and squamous cell skin cancers, Camargo adds. The team hopes to test that in future studies.

Finding a druggable cancer target

YAP is a transcription factor, a type of target that's been considered "undruggable," since transcription factors lack structural features that enable a drug to bind to them. But YAP in turn regulates the activity of many other genes, and Wei-Chien Yuan, PhD, in the Camargo lab set out to identify these genes, in hopes of finding something else to target.

Using human liver cancer cell lines and a mouse model of liver cancer, Yuan combined several assays to zero in on what downstream genes YAP influences. She found 14, then narrowed her search to kinases, enzymes that are especially amenable to being targeted with drugs. Just one emerged: NUAK2.

Further experiments showed that NUAK2 (also known as sucrose nonfermenting [SNF1]-like kinase, or SNARK) is critical for YAP-driven growth in human cancer cell lines and for liver cancer proliferation in mouse models.

Finally, they showed that a small-molecule compound that inactivates NUAK2 strongly curbed YAP-driven cancer cell proliferation and liver overgrowth.

Targeting NUAK2 has an added benefit, says Camargo, who is also affiliated with the Dana-Farber/Boston Children's Cancer and Blood Disorders Center. "It feeds back to further activate YAP itself, so inhibiting NUAK2 further decreases activity of YAP, which is exactly what you want."

Future plans

Yuan and her colleagues now hope to extend their findings.

"We know that inhibiting NUAK2 works in liver cancer. We now need to see if same mechanism is in play in other cancers," says Camargo.

They also plan to modify their small molecule, originally synthesized in the lab of Nathanael Gray, PhD, at the Dana-Farber Cancer Institute.

"We want to see if we can make the compound more selective," says Yuan, first author on the paper. "It has other nonspecific targets, so we need to modify it to make it usable."

A growth mindset

The story of YAP began over a decade ago with the discovery of the size-control pathway Hippo - so named because manipulating it in fruit flies led to growth of enormous tumors, oversized eyes and wings eight times the normal size. Larger animals with defects in Hippo were also found to have overgrown body parts, and Camargo showed that activating YAP can quadruple the size of a mouse liver. Hippo and YAP later became of interest to cancer researchers.
-end-
The current study was supported by the National Institutes of Health, the Pew Scholars Program, the Taiwan National Science Council, the National Cancer Center and the Swiss National Science Foundation.

About Boston Children's Hospital

Boston Children's Hospital, the primary pediatric teaching affiliate of Harvard Medical School, is home to the world's largest research enterprise based at a pediatric medical center. Its discoveries have benefited both children and adults since 1869. Today, more than 3,000 scientists, including nine members of the National Academy of Sciences, 17 members of the National Academy of Medicine and 11 Howard Hughes Medical Investigators comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's is now a 415-bed comprehensive center for pediatric and adolescent health care. For more, visit our Vector and Thriving blogs and follow us on social media @BostonChildrens, @BCH_Innovation, Facebook and YouTube.

Boston Children's Hospital

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.