Nav: Home

Proposed cancer treatment may boost lung cancer stem cells, study warns

November 19, 2018

Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant. Researchers at Boston Children's Hospital now report that at least one epigenetic therapy that initially looked promising for lung cancer actually has the opposite effect, boosting cancer stem cells that are believed to drive tumors. They also identify a strategy that reduces these cells, curbing lung cancer in mice.

Findings were published online today in Nature Communications.

Cancer stem cells have been identified in blood cancers and a variety of solid tumors. They make up a tiny fraction of tumor cells, but can regenerate a cancer on their own. Carla Kim, PhD, and colleagues in Boston Children's Hospital's Stem Cell Research program have shown that cancer stem cells play a role in adenocarcinoma, the most common type of lung cancer. When they transplanted cancer stem cells from a diseased mouse, previously healthy mice developed lung cancer.

The new study, led by lab member Samuel Rowbotham, PhD, looked at an epigenetic therapy that inhibits the enzyme G9a, a type of histone methyltransferase. G9a had been thought to be cancer-promoting, and some studies have suggested that inhibiting G9a is an effective strategy in certain cancers, including adenocarcinoma. Rowbotham and Kim now call this into question.

"People had looked at cell lines from lung tumors and found that they are sensitive to drugs inhibiting G9a," says Rowbotham, first author on the paper. "In general tumor cell populations, these drugs would slow down growth or even kill the cells. But we found that these drugs were also making the surviving tumor cells more stem-like. We predicted that this would advance disease progression, and this is what we saw."

The team first looked at adenocarcinoma cell lines and found that when the cells were treated with G9a, they became more like stem cells. They then transplanted cancer stem cells into live mice and tracked the development of adenocarcinoma. When they knocked down the G9a gene in lung tumors, the tumors grew bigger and spread farther.

Kim believes this down side to G9a hadn't been noticed because prior studies only looked at cell lines, and because cancer stem cells are hard to detect.

"Earlier studies couldn't see that cancer stem cells were still around, and there's more of them when you treat with these drugs," she says. "Because they're such a small fraction of the tumor, anything that affects them can easily be missed."

A new epigenetic target?

But Rowbotham, Kim and colleagues also found potentially better enzymes to target: Histone demethylases. Their action is chemically opposite to that of G9a, stripping off a methyl group from histone where G9a adds one. When Rowbotham knocked down the gene for demethylase enzymes, and added drug that prevents them from working, he was able to make the cells look less like cancer stem cells in a dish and behave less like cancer stem cells in live mice. When he gave demethylase inhibitors to mice with established lung tumors, cancer progression was slowed and the animals survived longer than untreated mice.

Although a cancer stem cell hasn't been found in human adenocarcinoma, Kim believes the findings are worth pursuing further. She notes a related line of evidence -- a 2017 study that found that demethylase inhibitors were effective in killing chemotherapy-resistant cells from patient tumors.

"Even if we can't pinpoint cancer stem cells in human patients, Sam's work shows you can start by studying a cancer stem cell in a mouse model and identify targets that could be clinically important," she says. "It shows the importance of finding the right molecule the cancer is sensitive to. In adenocarcinoma, a demethylase inhibitor is likelier to be more useful than methyltransferase inhibitor."

They and others envision a two-phase strategy for adenocarcinoma that would first target the general population of cancer cells to "debulk" the tumor, then add a second treatment specifically directed at cancer stem cells.

The team is now doing further studies to explore demethylase inhibitors as potential therapeutic drugs, alone or in combination with other treatments. Because demethylase inhibitors have very broad effects, they will also look for genes the inhibitors affect downstream, which could provide more specific drug targets.
-end-
This study was funded by a IASLC Young Investigator Fellowship, the National Institutes of Health, the American Cancer Society, the V Foundation for Cancer Research, the Thoracic Foundation, the Ellison Foundation, the BCH-Broad Institute Award, Harvard Medical School, the Harvard Stem Cell Institute, the American Lung Association, the ATS and the National Cancer Institute. For a full list of authors and affiliations, see the paper (DOI 10:1038/s41467-018-07077-1).

About Boston Children's Hospital

Boston Children's Hospital, the primary pediatric teaching affiliate of Harvard Medical School, is home to the world's largest research enterprise based at a pediatric medical center. Its discoveries have benefited both children and adults since 1869. Today, more than 3,000 scientists, including nine members of the National Academy of Sciences, 17 members of the National Academy of Medicine and 11 Howard Hughes Medical Investigators comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's is now a 415-bed comprehensive center for pediatric and adolescent health care. For more, visit our Vector and Thriving blogs and follow us on social media @BostonChildrens, @BCH_Innovation, Facebook and YouTube.

Boston Children's Hospital

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.