Simultaneous measurement of biophysical properties and position of single cells in a microdevice

November 19, 2019

Tracking the lateral position of single cells and particles plays an important role in evaluating the efficiency of microfluidic cell focusing, separation and sorting. Traditionally, the performance of microfluidic cell separation and sorting is evaluated either by analyzing the input and collected output samples requiring extra multiple steps of off-chip analysis or the use of expensive equipment (e.g., flow cytometry), or by detecting the lateral positions of cells using an expensive high-speed imaging setup with intricate image processing algorithms or laborious manual analysis. Hence, there is a great need to develop a simple approach for the lateral position measurement of flowing particles.

In this study, a Singapore University of Technology and Design (SUTD) research team led by Associate Professor Dr Ye Ai's developed a microfluidic impedance flow cytometry device for the lateral position measurement of single cells and particles with a novel N-shaped electrode design.

A differential current collected from N-shaped electrodes encodes the trajectory of flowing single particles. A simple analytical expression is derived for the measurement of the particle lateral position based on the relationship between the generating electrical current and the positions of the flowing particles, electrodes and microchannel, eliminating the usage of expensive high-speed camera and computationally intensive image processing or laborious manual analysis.

Principal investigator, Dr. Ai said: "Compared to previously reported impedance-based microfluidic devices for measuring the particle lateral position, we have achieved the highest measurement resolution, highest flow rate and smallest measured particle size (3.6 μm beads). On top of that, this method is more straightforward as the particle lateral position can be calculated directly from a simple analytical expression rather than using indexes, such as transit time and height of the signal peak or using linear mapping with calibration coefficients to transform the index (i.e., the relative difference of the signal peak magnitude) to the electrical estimates of the lateral position."
This work has been published and was also featured on the cover of 7 November 2019 issue of Lab on a Chip, a top-tier journal focused on research in innovative devices and applications at the micro- and nanoscale. SUTD graduate student, Dahou Yang participated in this research project. This work was supported by the Singapore Ministry of Education.

Singapore University of Technology and Design

Related Particles Articles from Brightsurf:

Comparing face coverings in controlling expired particles
Laboratory tests of surgical and N95 masks by researchers at UC Davis show that they do cut down the amount of aerosolized particles emitted during breathing, talking and coughing.

Big answers from tiny particles
A team of physicists led by Kanazawa University demonstrate a theoretical mechanism that would explain the tiny value for the mass of neutrinos and point out that key operators of the mechanism can be probed by current and future experiments.

How small particles could reshape Bennu and other asteroids
NASA's OSIRIS-REx spacecraft observed tiny bits of material jumping off the surface of the asteroid Bennu.

Probing the properties of magnetic quasi-particles
Researchers have for the first time measured a fundamental property of magnets called magnon polarisation -- and in the process, are making progress towards building low-energy devices.

TU Darmstadt: Pause button for light particles
Researchers at TU Darmstadt halt individual photons and can release them at the push of a button.

Chamber measurement standards established for fine particles
What effects do global warming and the formation of fine particles have on each other?

Distortion isn't a drag on fluid-straddling particles
New research published by EPJ E shows that the drag force experienced by fluid-straddling particles is less affected by interface distortion than previously believed.

Tiny 'bridges' help particles stick together
Understanding how particles bind together has implications for everything from the likelihood a riverbank will erode to the mechanism by which a drug works in the body.

Micromotors push around single cells and particles
A new type of micromotor -- powered by ultrasound and steered by magnets -- can move around individual cells and microscopic particles in crowded environments without damaging them.

Tiny particles lead to brighter clouds in the tropics
When clouds loft tropical air masses higher in the atmosphere, that air can carry up gases that form into tiny particles, starting a process that may end up brightening lower-level clouds, according to a CIRES-led study published today in Nature.

Read More: Particles News and Particles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to