A new pathway to 'reprogram' killer cells

November 19, 2019

The so-called natural killer (NK) cells are cells of the innate immune system that recognize and eliminate infected cells or cancer cells. During a virus infection, NK cells also keep the body's own immune cells such as the T cells at bay in order to avoid excessive killing of intact body cells. In addition, NK cells release messenger molecules that support the immune defense. NK cells are therefore particularly important for immunity - if they are defective, recurrent infections with several viruses and cancer can develop.

NK cells eliminate their target cells in two ways. They either kill them by releasing cell toxins or activate these targets to start a "self-destruction program". NK cells have special proteins on their surface - so-called death ligands - which dock to corresponding receptors on the target cells and thus activate their self-destruction. The protein TRAIL is one of these death ligands that NK cells use to kill their target cells. TRAIL stands for "Tumor necrosis factor-related apoptosis-inducing ligand". Compared to healthy cells, tumor cells are more sensitive to TRAIL stimulation. It is therefore believed that the binding of TRAIL to the TRAIL receptor triggers the death of tumor cells without affecting healthy cells.

Accordingly, this pathway is considered a promising approach to trigger the self-destruction of cancer cells. However, TRAIL appears to play a detrimental role in certain types of infections and a better understanding of the underlying mechanism is needed. A group led by Philippe Krebs from the Institute of Pathology at the University of Bern has now discovered new functions of TRAIL in viral infections that could also be important in the fight against cancer. The findings were published in the journal EMBO (European Molecular Biology Organization) Reports.

Killer cells without TRAIL become "tame"

Ludmila Cardoso-Alves at the Institute of Pathology studied the role of TRAIL in the response against a virus that is a natural pathogen in rodents and often serves as a model of viral infection in immunology. Cardoso-Alves investigated the infection in mice whose NK cells did not have TRAIL and found that these mice were able to fight the virus better than the control animals. Mice without TRAIL had more protective T cells and were therefore better able to remove virus-infected cells.

The lack of TRAIL made the NK cells "tamer": they had reduced killer function and instead produced more messenger molecules that activate other immune cells. This is due to the fact that NK cells without TRAIL sense various signals from their environment differently: on the one hand, they are less susceptible to a trigger that leads them to release cell toxins. At the same time, they react more strongly to another signal that causes them to release more messenger molecules. "TRAIL therefore plays a greater role in NK cells than previously thought - if it is missing, the killer cells are reprogrammed, so to speak," says Cardoso-Alves. This is not limited to mice, but also affects human NK cells.

Possible relevance for cancer immunotherapy

The results of this work may be important in the fight against cancer, since the discovered signaling pathway regulates the function of NK cells, which in turn are important for the control of tumor cells. There are several new cancer therapies that aim to reactivate the immune system in order to remove tumor cells, including studies aiming at reactivating NK cells in tumor patients. "Our results show an alternative way of influencing NK cells," said Cardoso-Alves. This could be used, for example, to combined the discovered TRAIL signaling pathway with other methods against tumors.
-end-


University of Bern

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.