Nav: Home

Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine

November 19, 2019

Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report November 19 in the journal Immunity. The findings potentially explain why asthma susceptibility is higher in children than in adults. By highlighting the important role of interactions between the nervous system and the immune system in childhood asthma, the results could lead to new strategies for treating the common chronic disease.

"This is the first study that reveals a contribution of age-related nerve-T cell communication to susceptibility to the development of asthma in young children," says senior study author Xingbin Ai, a Harvard researcher at Brigham & Women's Hospital and Massachusetts General Hospital. "Since asthma often starts in early childhood, we believe that the identification of disease mechanisms unique to young age will provide novel therapeutic targets for early intervention of asthma."

Asthma is a potentially life-threatening chronic condition that intermittently inflames and narrows the airways in the lungs, causing wheezing, chest tightness, shortness of breath, and coughing. Although medical treatment and management of environmental triggers can help control symptoms, there is currently no cure for the disease. In the United States, asthma affects more than 26 million people, including an estimated 6 million children. In fact, it is one of the most common long-term diseases of childhood.

Ai and colleagues suspected that the nervous system, which communicates with the immune system to regulate inflammation, might explain the high prevalence of asthma in children. As the nervous system continues to develop after birth, neurons may modulate tissue inflammation in an age-related manner.

In the new study, Ai and colleagues investigated the role of the developing nervous system in asthma characterizing early age. The researchers discovered that sympathetic nerves innervating the mouse lung primarily produced dopamine in early postnatal life but another neurotransmitter called norepinephrine in adult life. A similar pattern was evident when they compared lung and lymph node tissues from children up to 13 years of age and adults ranging in age from 40 to 65 years.

In addition, the researchers found that dopamine released by sympathetic nerves innervating the lung binds to the dopamine neurotransmitter receptor on CD4+ T helper cells to promote their differentiation into asthma-exacerbating Th2 cells, thereby enhancing lung inflammation. By contrast, norepinephrine-producing nerves in the adult lung had no such effect. Importantly, the findings reveal the similarity between mice and humans in terms of the innervation of dopamine-producing nerves in the early lung and the T cell response to dopamine.

In mouse models of allergen exposure, the dopamine-DRD4 pathway significantly increased Th2 cell inflammation in the lung tissue of neonatal mice, reducing mucus overproduction and airway hyper-responsiveness. By contrast, these effects were either not evident or much weaker in adult mice exposed to allergens.

Taken together, these findings demonstrate that the dopamine-DRD4 signaling between sympathetic nerves and CD4+ T helper cells in the lung plays an important role in augmenting allergic inflammation in early life. By facilitating inflammation, dopamine-producing nerves may endow the early lung with a mechanism of tissue repair following infection, which may be advantageous when the lung is immature and vulnerable to pathogens.

"Our findings provide evidence for the involvement of the communication between nerves and immune cells in susceptibility to asthma in early life," Ai says. "It is important to emphasize that simply generically blocking the nerve-immune cell communication is not a good solution, as nerves play important roles in regulating functions of the airway, such as breathing. We will need to identify more specific pathways along the nerve-immune cell axis for therapeutic targeting."

Toward this goal, the researchers will set out to identify druggable targets to disrupt the nerve-T cell communication that goes awry upon allergen exposure. They will also evaluate whether this age-related communication impacts the progression of asthma from childhood to adulthood, and if so, how disease progression can be prevented. Another avenue of future research will be to investigate how allergen exposure and viral infection may affect nerve development in the lung, thereby triggering asthma in children.

"We hope our findings can be used to facilitate the discovery of specific biomarkers for the identification of allergic asthma in children and to predict the severity and progression of the disease," Ai says. "In addition, targeting the communication between sympathetic nerves and CD4+ T cells via the dopamine-DRD4 pathway may be a strategy to battle the increasing prevalence of allergic asthma in children."
-end-
The project is supported by the National Institutes of Health. The authors declare no competing interests.

Immunity, Wang et al.: "Age-related dopaminergic innervation augments Th2 inflammation in the postnatal lung" https://www.cell.com/immunity/fulltext/S1074-7613(19)30446-7

Immunity (@ImmunityCP), published by Cell Press, is a monthly journal that reports the most important advances in immunology research. Topics include: immune cell development and senescence, signal transduction, gene regulation, innate and adaptive immunity, autoimmunity, infectious disease, allergy and asthma, transplantation, and tumor immunology. Visit: http://www.cell.com/immunity. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Asthma Articles:

Breastfeeding and risks of allergies and asthma
In an Acta Paediatrica study, exclusive breastfeeding for the first 3 months was linked with a lower risk of respiratory allergies and asthma when children reached 6 years of age.
Researchers make asthma breakthrough
Researchers from Trinity College Dublin have made a breakthrough that may eventually lead to improved therapeutic options for people living with asthma.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
New knowledge on the development of asthma
Researchers at Karolinska Institutet in Sweden have studied which genes are expressed in overactive immune cells in mice with asthma-like inflammation of the airways.
Eating fish may help prevent asthma
A scientist from James Cook University in Australia says an innovative study has revealed new evidence that eating fish can help prevent asthma.
Academic performance of urban children with asthma worse than peers without asthma
A new study published in Annals of Allergy, Asthma and Immunology shows urban children with poorly controlled asthma, particularly those who are ethnic minorities, also suffer academically.
Asthma Controller Step Down Yardstick -- treatment guidance for when asthma improves
The focus for asthma treatment is often stepping up treatment, but clinicians need to know how to step down therapy when symptoms improve.
Asthma management tools improve asthma control and reduce hospital visits
A set of comprehensive asthma management tools helps decrease asthma-related visits to the emergency department, urgent care or hospital and improves patients' asthma control.
Asthma linked to infertility but not among women taking regular asthma preventers
Women with asthma who only use short-acting asthma relievers take longer to become pregnant than other women, according to research published in the European Respiratory Journal.
What are the best ways to diagnose and manage asthma?
A team of experts from The University of Texas Medical Branch at Galveston examined the current information available from many different sources on diagnosing and managing mild to moderate asthma in adults and summarized them.
More Asthma News and Asthma Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.