Computer model described the dynamic instability of microtubules

November 19, 2019

Researchers of Sechenov University together with their colleagues from several Russian institutes studied the dynamics of microtubules that form the basis of the cytoskeleton and take part in the transfer of particles within a cell and its division. The computer model they developed describes the mechanical properties of protofilaments (longitudinal fibers that compose microtubules) and suggests how they assemble and disassemble. All the details of the study can be found in PLOS Computational Biology.

Microtubules are long hollow cylinders with walls consisting of tubulin molecules arranged helix-wise. Each cycle contains 13 pairs of α- and β-tubulin, so a microtubule is composed of 13 longitudinal fibers, protofilaments. Microtubules grow by addition of tubulin from the cytoplasm. The protein binds more actively to one end (plus-end) of the microtubule and dissociates from the other one (minus-end) quicker. Both processes take place simultaneously, but their rate changes: when the concentration of tubulin is sufficient, microtubules grow faster than degrade, and when the concentration is low - vice versa. Between the phases of growth and shrinking there is a period of stability, but it is very short.

Though the mechanisms of microtubule's growth and shortening are well-studied, there are still quite a few questions about how the structure and properties of tubulin change. It is known that both molecules of tubulin (α- and β-tubulin) are connected to a molecule of guanosine triphosphate (GTP). GTP of β-tubulin can hydrolyse and turn into guanosine diphosphate (GDP) that causes the double tubulin molecule (dimer) to dissociate from a microtubule. The authors of the paper tried to understand how the properties of tubulin dimers and protofilaments depend on GTP hydrolysis and what provides the difference between plus- and minus-ends of microtubules. Above all, microtubules take part in cell division, and studies of these mechanisms will contribute to the search for yet unknown ways to suppress the replication of cancer cells. In particular, microtubules serve as molecular targets for an important anti-tumour drug, paclitaxel, that inhibits microtubule disassembly.

Existing studies offer several models of possible changes in protein structure taking place upon GTP hydrolysis: a slight curving of tubulin dimers or weakening of longitudinal bonds between dimers without significant changes in their shape. Some researchers also suggest that hydrolysis may affect interactions between neighbouring protofilaments. According to the authors, it was impossible to prove or refute any of these claims for a long time because of the lack of precise experimental data. In this research they verified the first hypothesis and computed the 'behaviour' of molecules using the latest of available experimental structures obtained by cryo-electron tomography. They examined bonds between dimers as well as between α- and β-tubulin within them.

Scientists modelled the bending of the tubulin dimer and the whole protofilament, with GTP and GDP bound to them, throughout one millisecond, watching the angle and direction of the curvature and assessing the strength of bonds within and between dimers. The results showed that protofilaments with GTP and GDP-bound tubulin were bent almost to the same extent, so the first hypothesis was disproved. But it turned out that GTP influences the flexibility of the bonds between dimers: protofilaments made of tubulin connected with GTP were much more bendable compared with those containing GDP.

Using the revealed difference in bond rigidity between GTP and GDP-connected protofilaments, the authors concluded that more flexible bonds ease the straightening of protofilaments and thus facilitate the assembly of the microtubule.

'Based on simulations, we developed a simple model of dynamic instability of microtubules, i.e. their assembly and disassembly. A deeper understanding of this process on the molecular level would enable a targeted development of medicines able to affect the stability of microtubules and thus prevent the reproduction of tumour cells', said Philipp Orekhov, co-author of the paper and senior scientist at the Institute for Personalized Medicine, Sechenov University.

Sechenov University

Related Cell Division Articles from Brightsurf:

Cell division: Cleaning the nucleus without detergents
A team of researchers, spearheaded by the Gerlich lab at IMBA, has uncovered how cells remove unwanted components from the nucleus following mitosis.

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.

Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.

Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.

Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.

Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.

Read More: Cell Division News and Cell Division Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to