A bypass route for the coronary vessels in the heart?

November 19, 2020

Cardiovascular disease is the leading cause of mortality and ischemic heart disease is a major cause of death worldwide. Coronary vessels that nourish the heart develop from three main sources, the endocardium on the inner surface of the hearts blood-filled chambers being one of the major contributors. In normal conditions, the adult heart can no longer generate new blood vessels from the endocardium, because the endocardium-to-coronary vessel transition is blocked by a connective tissue wall beneath the endocardium. In the study published this week, an international team led by researchers of the Wihuri Research Institute and the University of Helsinki show that the VEGF-B growth factor can be used to activate the growth of vessels inside of the heart during cardiac ischemic damage.

This novel finding opens the possibility, that vessels emerging from the inner side of the heart could be further developed for the treatment of myocardial infarction, which results from insufficient delivery of oxygen to cardiac tissue. In normal conditions, blood nourishes the adult heart through coronary vessels. The largest coronary vessels are located on the heart surface, and their branches dive into heart muscle to deliver oxygen-rich blood into the inner parts of the heart. Occlusion of the largest coronary arteries due to atherosclerosis and blood clotting is commonly treated by catheter-mediated reopening. However, any remaining blood clots in the small coronary vessels inside the heart cannot be removed, which can lead to local infarction of the heart muscle. Due to the long distance of blood delivery to the inner myocardium, and pressure conditions during heartbeat, infarctions of the inner myocardium are particularly common in patients with hypertension.

Increasing coronary vessels by using VEGF-B

VEGF-B (vascular endothelial growth factor) belongs to a family of growth factors that regulate the formation of blood- and lymphatic vessels. Professor Ulf Eriksson at the Karolinska Institute together with academy professor Kari Alitalo were the first to isolate the VEGF-B gene in 1996. Together with the research group of professor Seppo Ylä-Herttuala, they previously showed that VEGF-B can induce the growth of coronary vasculature.

Earlier attempts to utilize another growth factor gene, VEGF-A, to grow new vessels in the heart have failed, mostly due to the leakiness of the vessels and increased inflammation caused by VEGF-A, but not by VEGF-B.

"The highlight of this study is that by using VEGF-B, we were able to induce the growth of new vessels from the inner surface of the cardiac ventricles during heart development, and again in adult mice, in the ischemic inner parts of the heart", says Markus Räsänen MD, PhD.

"Such kind of a novel "bypass route" could open translational therapeutic possibilities for the treatment of coronary artery disease. Re-activation of the embryonic vessel growth program in adult endocardium could be a new therapeutic strategy for cardiac neovascularization after myocardial infarction. For possible future clinical use, the function of these vessels and their blood flow has to be further studied to ensure that they really increase transport of oxygen and nutrients into the cardiac muscle", confirms the director of Wihuri Research Institute, academy professor Kari Alitalo.
-end-


University of Helsinki

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.