Advance helps explain stem cell behavior

November 20, 2006

CORVALLIS, Ore. -- Biochemists at Oregon State University have developed a new method to identify the "DNA-binding transcription factors" that help steer stem cells into forming the wide variety of cells that ultimately make up all the organs and parts of a living vertebrate animal.

The findings were made using mouse embryonic spinal cord as a model, and will be announced this week in Proceedings of the National Academy of Sciences, a professional journal.

The research is an important step towards understanding stem cell behavior, how cellular development is controlled, and how a single cell - which has the genetic code within it to become any cell in the body - is told what to become, where to go, and what metabolic function to perform.

Fundamental discoveries such as this, experts say, could ultimately lead to the ability to simulate and possibly control the early developmental process, manipulating stem cells in a way that would help address disease problems, injuries, failing organs or other medical issues.

"If you have an electrical problem in a car, you can repair it a lot easier if you have a wiring diagram," said Michael Gross, an assistant professor of biochemistry and biophysics at OSU. "In a way that's what we're trying to do here, except we're trying to repair or create a certain kind of cell. To do that you need a blueprint of how these processes work, and this will help us create that blueprint."

Even though the processes of cellular development are understood in a broad sense, the detailed biochemistry that underlies and controls these processes is still poorly defined. The overall process appears to be incredibly complex with many pieces and "combinatorial interactions."

Still unknown is exactly what causes certain genes to be expressed. In other words, out of the thousands of genes that could direct the formation of a cell in many different directions, only a subset actually get turned on and become operative in each type of cell. And beyond that, the newly-formed cells then need to arrange themselves in distinct patterns to perform life functions.

"It's clear that there is an extended sequence of steps which turn some genes on and others off, allowing a cell to become a liver cell, for instance, rather than a brain cell," said Chrissa Kioussi, an OSU assistant professor of pharmacology and co-author on the study. "We were able to use a system of microarray comparisons that monitored the expression of genes and more quickly gives us an idea of how this process is working, and how patterns of development occur."

The studies were done in embryonic spinal cord in mice, although the same process ultimately takes place during development of any organ or bodily system, the researchers said. The research identified the subset of genes involved in producing the various types of spinal cord cells - there may be 10s to 100s of cell types just in the spinal cord. The cell types are created very quickly in early embryonic development by a pattern formation mechanism, and then mature more slowly as the central nervous system creates the functional neural circuits.

Understanding this pattern formation mechanism will be essential to the ultimate use of stem cells in medical research and disease treatment, the scientists said. Ideally, researchers would like to create a "transcriptional network model" that simulates all of the complex and interactive steps in this patterning process, Gross said.

Much of this process happens during a surprisingly short time and at very early stages of embryonic development. In mice, for instance, virtually all of the types of cells are formed in 12 days, during what would correspond to a fraction of the "first trimester" of the human gestational period, as genetic mechanisms guide the "readout" of DNA and control the formation of different types of cells. The cell types themselves are created well before they are "wired together" to create functional organs and bodily systems.

The same basic process takes place in humans, scientists say. In fact, the process is so important and fundamental to life that it has been conserved through millions of years of evolution, and is largely the same among vertebrate animal species, whether they are fish, horses, mice or humans.

Once the process is more fully understood, it should be much more feasible to influence and control it, researchers say. If the task were spinal cord repair, for instance, the goal would be to influence cells to become certain types of spinal cord cells. This area of "molecular medicine" is one of the fastest growing fields of research today, and may ultimately lead to cures or treatments for conditions now thought to be incurable.

"You can't attempt to cure a disease or repair a problem if you don't know what molecular players are involved," Gross said. "That's what we're moving towards. We now have a better idea of some of the key components in this process."
-end-
Advance Aids Understanding of Stem Cell Behavior

By David Stauth, 541-737-0787
Source: Chrissa Kioussi, 541-737-2179

Oregon State University

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.