Brain reorganizes to adjust for loss of vision

November 20, 2008

A new study from Georgia Tech shows that when patients with macular degeneration focus on using another part of their retina to compensate for their loss of central vision, their brain seems to compensate by reorganizing its neural connections. Age-related macular degeneration is the leading cause of blindness in the elderly. The study appears in the December edition of the journal Restorative Neurology and Neuroscience.

"Our results show that the patient's behavior may be critical to get the brain to reorganize in response to disease," said Eric Schumacher, assistant professor in Georgia Tech's School of Psychology. "It's not enough to lose input to a brain region for that region to reorganize; the change in the patient's behavior also matters."

In this case, that change of behavior comes when patients with macular degeneration, a disease in which damage to the retina causes patients to lose their vision in the center of their visual field, make up for this loss by focusing with other parts of their visual field.

Previous research in this area showed conflicting results. Some studies suggested that the primary visual cortex, the first part of the cortex to receive visual information from the eyes, reorganizes itself, but other studies suggested that this didn't occur. Schumacher and his graduate student, Keith Main, worked with researchers from the Georgia Tech/Emory Wallace H. Coulter Department of Biomedical Engineering and the Emory Eye Center. They tested whether the patients' use of other areas outside their central visual field, known as preferred retinal locations, to compensate for their damaged retinas drives, or is related to, this reorganization in the visual cortex.

The researchers presented 13 volunteers with a series of tests designed to visually stimulate their peripheral regions and measure brain activity with functional magnetic resonance imaging. They found that when patients visually stimulated the preferred retinal locations, they increased brain activity in the same parts of the visual cortex that are normally activated when healthy patients focused on objects in their central visual field. They concluded that the brain had reorganized itself.

The parts of the visual cortex that process information from the central visual field in patients with normal vision were reprogrammed to process information from other parts of the eye, parts that macular degeneration patients use instead of their central visual areas.

While there is evidence with other tasks that suggests that the brain can reorganize itself, this is the first study to directly show that this reorganization in patients with retinal disease is related to patient behavior.

The research group is currently studying how long this reorganization takes and whether it can be fostered through low-vision training.
-end-
The research was funded in part by a seed grant from the Georgia Tech/Emory Health Systems Institute.

Georgia Institute of Technology

Related Macular Degeneration Articles from Brightsurf:

Levodopa may improve vision in patients with macular degeneration
Investigators have determined that treating patients with an advanced form of age-related macular degeneration (AMD) with levodopa, a safe and readily available drug commonly used to treat Parkinson's disease, stabilized and improved their vision.

Combating drug resistance in age-related macular degeneration
An international team of researchers led by Baylor College of Medicine and Houston Methodist has discovered a strategy that can potentially address a major challenge to the current treatment for age-related macular degeneration,

Study finds unexpected suspect in age-related macular degeneration
Scientists have identified an unexpected player in the immune reaction gone awry that causes vision loss in patients with age-related macular degeneration (AMD), according to a new study published today in eLife.

Potential way to halt blinding macular degeneration identified
It would be the first treatment for dry age-related macular degeneration and could significantly improve treatment for wet AMD.

Heating techniques could improve treatment of macular degeneration
Age-related macular degeneration is the primary cause of central vision loss and results in the center of the visual field being blurred or fully blacked out.

Eye's vulnerability to macular degeneration revealed
Scientists have found significant differences in the shape and biology of the same type of cell taken from different parts of the retina, according to a study in eLife.

Hallucinations associated with brain hyperactivity in people with macular degeneration
New research from The University of Queensland has shown for the first time that visual hallucinations in people with macular degeneration are associated with abnormally heightened activity in the visual cortex of the brain.

Eating leafy greens could help prevent macular degeneration
A new study has shown that eating vegetable nitrates, found mainly in green leafy vegetables and beetroot, could help reduce your risk of developing early-stage age-related macular degeneration (AMD).

An orange a day keeps macular degeneration away: 15-year study
A new study has shown that people who regularly eat oranges are less likely to develop macular degeneration than people who do not eat oranges.

Macular degeneration linked to aging immune cells
Studying mice and cells from patients, vision researchers at Washington University School of Medicine in St.

Read More: Macular Degeneration News and Macular Degeneration Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.